

US 2009/0262877 AI

COMPUTATION SPREADING UTILIZING
DITHERING FOR SPUR REDUCTION IN A

DIGITAL PHASE LOCK LOOP

REFERENCE TO RELATED APPLICATIONS

[0001] This application is related to U.S. Ser. No. 11/853,
575, filed Sep. 11, 2007, entitled "Software reconfigurable
digital phase lock loop architecture", U.S. Ser. No. 11/853,
588, filed Sep. 11, 2007, entitled "Computation spreading for
spur reduction in a digital phase lock loop", U.S. Ser. No.
11/949,310, filed Dec. 3, 2007, entitled "Computation paral­
lelization in software reconfigurable all digital phase lock
loop", all of which are incorporated herein by reference in
their entirety.

FIELD OF THE INVENTION

[0002] The present invention relates to the field of data
communications and more particularly relates to an apparatus
for and method of computation spreading using dithering to
significantly reduce the generation of frequency spurs in a
digital phase locked loop (DPLL) architecture.

BACKGROUND OF THE INVENTION

[0003] Phase locked loop (PLL) circuits are well known in
the art. A block diagram illustrating an example prior art
phase locked look (PLL) circuit is shown in FIG. 1. The
typical PLL circuit, generally referenced 170, comprises
phase detector 172, loop filter or low pass filter (LPF) 174 and
voltage controlled oscillator (VCO) 176.
[0004] In operation, a frequency reference clock signal,
often derived from a crystal oscillator, is input to the phase
detector along with the VCO output signal (often divided
down). The phase detector, typically implemented as a charge
pump or mixer, generates a phase error (PHE) proportional to
the phase difference between the reference clock input signal
and the VCO output clock signal. The resultant PHE signal is
then low pass filtered to yield a slow varying frequency com­
mand signal that controls the frequency of the VCO. The
frequency command signal is input to a VCO or digitally
controlled oscillator (DCO) such that the VCO output fre­
quency/phase is locked to the reference clock with a certain
fixed relationship. This oscillator generates an RF signal
whose frequency depends on the frequency command signal.
[0005] In wireless communication systems, e.g., GSM,
UMTS, Bluetooth, WiFi, etc., the RF synthesizer is a funda­
mental block that is used to provide a high quality, high
frequency RF carrier for the transmitter and a local oscillator
clock for the receiver, whose output frequency can range from
several hundreds ofMHz to several GHz. Different applica­
tions with different standards require different RF frequen­
cies with different RF performance requirements. The RF
clock generating the RF carrier plays a critical role in the
entire wireless communication system. The quality of the RF
clock directly affects the communication performance and
often is the determining factor whether the system meets
standards specifications.
[0006] Typically, the RF synthesizer is implemented using
a phase locked loop (PLL) typically using a pure hardwired
(i.e. largely fixed hardware with limited reconfigurability)
design approach. All digital phase locked loops (ADPLLs)
for RF synthesizer construction targeting wireless communi­
cations are known in the art. Conventional ADPLL circuits,
however, are implemented as fixed hardware based (or hard-

1
Oct. 22, 2009

wired) with limited reconfigurability. It is thus difficult for
one design to readily support multi-standard wireless appli­
cations, e.g., GSM, GPRS, EDGE, WCDMA, etc. as well as
wireless data networks, such as Bluetooth, WiFi and
WiMAX.
[0007] Once a hardwired circuit design is committed to a
physical implementation, there is little that can be changed
regarding the transfer function or operation of the ADPLL.
Any modification requiring logic and interconnect change
results in numerous time consuming steps within the ASIC
creation process (i.e. timing closure, physical design, etc.)
typically requiring significant engineering resources and
months of delay to launch a product. In addition, once the
silicon is manufactured, any change to the ADPLL architec­
ture makes an even costlier impact, making such changes
virtually impractical.
[0008] In general, a main difference between a hardwired
implementation and a microprocessor based implementation
is that the microprocessor implementation uses shared hard­
ware running at higher speed, while the hardwired implemen­
tation uses dedicated hardware running at lower speed. A
block diagram illustrating an example prior art generalized
processing block using a dedicated hardware implementation
is shown in FIG. 2. The hardwired implementation, generally
referenced 10, comprises a plurality of dedicated hardware
blocks 12 for each function 14. The circuit provides memory
(Mem1, Mem2, Mem3, Mem4) and dedicated hardware for
each function (F1, F2, F3, F4), wherein each block runs at the
data path speed fs.
[0009] A block diagram illustrating an example prior art
generalized processing block using a processor based imple­
mentation is shown in FIG. 3. The circuit, generally refer­
enced 16, comprises instruction memory 18, instruction fetch
20, instruction decode 22, ALU 24, data bus 29, register file
26 and data memory 28. The processor based solution has one
shared hardware blockALU that can be configured to execute
any of the four functions (F1, F2, F3, F4). The ALU is pro­
grammed by the instructions stored in instruction memory 18
and the ALU is adapted to run four times faster (40 to
complete the data processing within the data path speed of fs.
[0010] With CMOS process technology currently advanc­
ing from 65 nm to 45 nm to 32 nm, transistors are becoming
faster and faster. The interconnections, however, are becom­
ing more and more dominant in SOC design regarding the
delay and area contribution. The interconnections in a hard­
wired design having a large area will significantly slow the
circuit speed while adding a significant silicon area overhead.
Since processor based solutions run at higher speed with
shared hardware, resulting in smaller area, advancements in
semiconductor technology will make processor based solu­
tions more and more attractive. This further favors use of
multiple but smaller processors with a dedicated instruction
set rather than one processor with a more general instruction
set.
[0011] Furthermore, in conventional ADPLL circuits, the
digital part of local oscillator (DLO) (i.e. a portion of the
ADPLL) is implemented using dedicated random logic gates.
Thus, all computations are launched on the rising edge of the
ADPLL system reference clock and latched on the next rising
edge. Since a majority of the circuit switching activity is
centered on the rising edge of the system reference clock,
most of the digital current is being switched at that point as
well, creating large current transients. These digital current
surges find their way into on-chip DCO, LNA, mixer and PA

US 2009/0262877 AI

circuit nodes via various coupling mechanisms, e.g., capaci­
tive, etc. These disturbances at the system clock rate have
strong harmonics that are upconverted into sensitive areas of
the RF spectrum, resulting in unacceptable RF spurious
tones.
[0012] It is thus desirable to have a processor based PLL
architecture that is software based and programmable. The
programmable PLL should provide a reconfiguration capa­
bility which eases silicon debugging and development tasks
and provides multi-standard operation capability. Further, the
software based PLL architecture should create significantly
lower current transients thus reducing the generation of spurs
in the output spectrum. At the same time, the unavoidable
spurious energy that is generated by the logic activity and
coupled into RF circuits should be pushed higher in frequency
where they lie outside of or can be easily filtered out of critical
frequency bands.

SUMMARY OF THE INVENTION

[0013] The present invention is a novel and useful appara­
tus for and method of spur reduction using computation
spreading and dithering in a digital phase locked loop (DPLL)
architecture. The invention is particularly suitable for use
with a software based phase locked loop (PLL). The proces­
sor-based PLL (i.e. all digital phase-locked loop or ADPLL)
architecture described herein can be used for RF frequency
synthesis in radio transceivers and other applications.
[0014] The software based phase locked loop incorporates
a reconfigurable calculation unit (RCU) that can be pro­
grammed to sequentially perform all the atomic operations of
a phase locked loop or any other desired task. The RCU is a
key component in a so called application specific instruction­
set processor (ASIP). The ASIP includes an instruction set
that comprises instructions optimized to perform the indi­
vidual atomic operations of a phase locked loop.
[0015] The reconfigurable computational unit (RCU) is
time shared for all computations within the phase locked
loop. The reconfigurable computational unit and related con­
figuration control logic replaces the dedicated and distributed
random logic inside the conventional digital PLL. The recon­
figurable computational unit is controlled via microcode
stored in on-chip memory (e.g., RAM or ROM). Since the
computational unit is time shared among all operations, it is
operated at an oversampled rate that is high enough to insure
the proper implementation of the phase locked loop. In order
to achieve this, the reconfigurable computational unit is opti­
mized to perform all computations of the phase locked loop
atomic operations within a single reference clock cycle.
[0016] In one embodiment, the instruction set is imple­
mented in microcode that is stored in volatile or non-volatile
memory. Thus, the ASIP can easily be reconfigured to imple­
ment customized designs for different applications, such as
multiple cellular standards, including GSM, GPRS, EDGE,
WCDMA, Bluetooth, WiFi, etc., as well as wireless data
network standards, including Bluetooth, WiFi, WiMAX, etc.
The ASIP can be configured on the fly to handle the different
RF frequency and performance requirements of each com­
munication standard. The software based PLL of the present
invention provides the flexibility for a more unified design
that fits different applications.
[0017] In another embodiment, the phase locked loop task
is partitioned into a plurality of atomic operations. The ASIP
is adapted to spread the computation of the atomic operations
out over and completed within an entire PLL reference clock

2
Oct. 22, 2009

period. Each computation being performed at a much higher
processor clock frequency than the PLL reference clock rate.
This functions to significantly reduce the per cycle current
transient generated by the computations. Further, the fre­
quency content of the current transients is at the higher pro­
cessor clock frequency. This results in a significant reduction
in spurs within sensitive portions of the output spectrum.
[0018] In addition, dithering is introduced to further reduce
frequency spurs in the band of interest. In one embodiment,
the duration of the software loop is dithered around the nomi­
nal clock period by adding a single wait cycle to the software
loop. In another embodiment, the spurs are further reduced by
spreading a plurality of wait cycles throughout the software
loop. In yet another embodiment, the spurs are reduced by
shuffling (randomly or pseudo-randomly) one or more non­
data dependent instructions in each iteration of the software
loop.
[0019] An example application is provided of the software
based phase locked loop incorporated in a single chip radio,
e.g., Bluetooth, GSM, etc., that integrates the RF circuitry
with the digital base band (DBB) circuitry on the same die.
[0020] Advantages of the software reconfigurable phase
locked loop of the present invention include the following.
Firstly, the invention enables all phase domain calculations to
be performed within one reference clock cycle due to the use
of the reconfigurable calculation unit optimized for perform­
ing PLL calculations serially at high frequency. Secondly,
defining the ASIP instruction set in microcode stored in vola­
tile or non-volatile memory makes it inherently software
reconfigurable, permitting the microcode to be replaced with­
out changing any lithography masks. The enables easier sili­
con debugging and multi-standard radio support.
[0021] Thirdly, the invention permits a significant reduc­
tion in silicon area. The invention trades the rate of operation
for the amount of active implementation area required by the
process of oversampling and function sharing. For an X factor
increase in operational frequency, there is a complimentary X
factor decrease in the required computational combinatorial
logic area. An additional area is needed due to the overhead of
computational unit multiplexing. While the storage area is
constant, the net result is a significant reduction in overall
implementation area required.
[0022] Fourthly, the invention enables a significant reduc­
tion ofRF spurs in the sensitive frequency bands of a radio by
changing the frequency of the switching logic gates. Prior art
solutions perform PLL computations at relatively low rates,
e.g., FREF of26-38.8 MHz. The resulting switching current
transients are mixed with the carrier and appear as frequency
spurs at sensitive radio frequency bands. Considering GSM,
for example, the most sensitive RX band is approximately 20
to 80 MHz away from the carrier. The invention performs the
bulk of computations at oversampled rates, resulting in spurs
outside sensitive regions. The amount of oversampling can be
controlled (e.g., increased or decreased) to provide any
desired frequency planning by changing the frequency of the
processing clock. Fifthly, reduction in silicon area provided
by the invention enables power routing and decoupling
capacitance requirements to be relaxed.
[0023] Note that some aspects of the invention described
herein may be constructed as software objects that are
executed in embedded devices as firmware, software objects
that are executed as part of a software application on either an
embedded or non-embedded computer system such as a digi­
tal signal processor (DSP), microcomputer, minicomputer,

US 2009/0262877 AI

microprocessor, etc. running a real-time operating system
such as WinCE, Symbian, OSE, Embedded LINUX, etc. or
non-real time operating system such as Windows, UNIX,
LINUX, etc., or as soft core realized HDL circuits embodied
in anApplication. Specific Integrated Circuit (ASIC) or Field
Programmable Gate Array (FPGA), or as functionally
equivalent discrete hardware components.

[0024] There is this provided in accordance with the inven­
tion, a method of reducing the generation of frequency spurs
in the performance of a processing task normally performed
within a reference clock period, the method comprising the
steps of dividing the task into a plurality of atomic operation
computations for execution in a software loop, randomizing
the execution of one or more atomic operations in each itera­
tion of the software loop and wherein the atomic operations
are clocked using a processor clock having a frequency sig­
nificantly higher than that of the reference clock.

[0025] There is also provided in accordance with the inven­
tion, a method of reducing the generation of frequency spurs
in a software based digital phase locked loop normally per­
formed within a reference clock period, the method compris­
ing the steps of dividing computation of the phase locked loop
operation into a plurality of atomic operation computations
for execution in a software loop, dithering the duration of
each iteration of the software loop and wherein the atomic
operations are clocked using a processor clock having a fre­
quency significantly higher than that of the reference clock.

[0026] There is further provided in accordance with the
invention, a method of reducing the generation of frequency
spurs in a software based digital phase locked loop normally
performed within a reference clock period, the method com­
prising the steps of dividing computation of the phase locked
loop operation into a plurality of atomic operation computa­
tions for execution in a software loop, dithering the duration
of each iteration of the software loop by inserting a plurality
of random wait periods throughout the software loop and
wherein the atomic operations are clocked using a processor
clock having a frequency significantly higher than that of the
reference clock.

[0027] There is also provided in accordance with the inven­
tion, a method of reducing the generation of frequency spurs
in a software based digital phase locked loop normally per­
formed within a reference clock period, the method compris­
ing the steps of dividing computation of the phase locked loop
operation into a plurality of atomic operation computations
for execution in a software loop, randomly shuffling the order
of execution of one or more atomic operations in each itera­
tion of the software loop and wherein the atomic operations
are clocked using a processor clock having a frequency sig­
nificantly higher than that of the reference clock.

[0028] There is further provided in accordance with the
invention, a phase locked loop (PLL) having a reference
clock, the PLL comprising means for partitioning computa­
tion of the phase locked loop into a plurality of atomic opera­
tion computations for execution in a software loop, means for
randomizing the execution of one or more atomic operations
in each iteration of the software loop, a processor clock hav­
ing a frequency significantly higher than that of the reference
clock, an oscillator operative to generate a radio frequency
(RF) signal having a frequency determined in accordance
with a tuning command input thereto and a processor opera­
tive to generate the tuning command, the processor clocked at
the processor clock rate, the processor comprising a calcula-

3
Oct. 22, 2009

tion unit operative to execute instructions, wherein each
instruction is operative to perform one of the atomic operation
computations.

BRIEF DESCRIPTION OF THE DRAWINGS

[0029] The invention is herein described, by way of
example only, with reference to the accompanying drawings,
wherein:
[0030] FIG. 1 is a block diagram illustrating a simplified
block diagram of an example prior art phase locked look
(PLL) circuit;
[0031] FIG. 2 is a block diagram illustrating an example
prior art generalized processing block using a dedicated hard­
ware implementation;
[0032] FIG. 3 is a block diagram illustrating an example
prior art generalized processing block using a processor
based implementation;
[0033] FIG. 4 is a block diagram illustrating a single chip
polar transmitter based radio incorporating a software based
DPLL using dithering mechanism of the present invention;
[0034] FIG. 5 is a simplified block diagram illustrating an
example mobile communication device incorporating the
software based DPLL using dithering mechanism of the
present invention;
[0035] FIG. 6 is a block diagram illustrating functions of an
exampleADPLL-based polar transmitter suitable for use with
the present invention;
[0036] FIG. 7 is a simplified block diagram illustrating an
embodiment of the software based ADPLL incorporating a
processor based phase domain calculator;
[0037] FIG. 8 is a block diagram illustrating an example
embodiment of the phase domain calculator of the present
invention in more detail;
[0038] FIG. 9 is a timing diagram illustrating the process­
ing clock and reference frequency timing;
[0039] FIG. 10 is a block diagram illustrating an instruction
view of the software basedADPLL architecture of the present
invention;
[0040] FIG. 11 is a block diagram illustrating an example
processor based software ADPLL architecture of the present
invention;
[0041] FIG. 12A is a diagram illustrating the output and
transfer function equations for the infinite impulse response
(IIR) filter portion of the ADPLL;
[0042] FIG. 12B is an equivalent block diagram imple­
menting the output equation shown in FIG. 12A;
[0043] FIG. 12C is an equivalent block diagram imple­
menting the output equation shown in FIG. 12A whereby the
multiplication operations have been replaced with shift
operations;
[0044] FIG. 12D is a diagram illustrating the resultant
reconfigurable calculation unit (RCU) implementing the out­
put equation shown in FIG. 12A;
[0045] FIG. 13 is a block diagram illustrating an example
RCU unit for implementing the ADPLL circuit;
[0046] FIG. 14 is a block diagram illustrating the RCU unit
for implementing the F _Diff() instruction;
[0047] FIG. 15 is a block diagram illustrating the RCU unit
for implementing the F _PheAcc() instruction;
[0048] FIG. 16 is a block diagram illustrating the RCU unit
for implementing the F _IIR() instruction;
[0049] FIG. 17 is a block diagram illustrating the RCU unit
for implementing the F _SHR() instruction;

US 2009/0262877 AI

[0050] FIG. 18 is a block diagram illustrating the RCU unit
for implementing the F _IntAcc() instruction;
[0051] FIG. 19 is a block diagram illustrating the RCU unit
for implementing the F _SHRAdd() instruction;
[0052] FIG. 20 is a timing diagram illustrating several
ADPLL processing clock options and the current spikes
resulting therefrom;
[0053] FIG. 21 is a timing diagram illustrating an example
RF spectrum generated by a legacy ADPLL;
[0054] FIG. 22 is a timing diagram illustrating an example
RF spectrum generated by the software basedADPLL of the
present invention;
[0055] FIG. 23 is a flow diagram illustrating the RF spur
reduction method of the present invention;
[0056] FIG. 24 is a diagram illustrating a spurious fre­
quency pattern with 3.8 MHz gaps between spurs;
[0057] FIG. 25 is a diagram illustrating a spurious fre­
quency pattern with 2.0 MHz gaps between spurs;
[0058] FIG. 26 is a diagram illustrating a spurious fre­
quency pattern with 0.7 MHz gaps between spurs;
[0059] FIG. 27 is a diagram illustrating the relationship
between loop size and spur gap;
[0060] FIG. 28 is a diagram illustrating a square wave with
and without dithering;
[0061] FIG. 29 is a diagram illustrating the power spectral
density of the square wave without dithering;
[0062] FIG. 30 is a diagram illustrating the power spectral
density of the square wave with dithering;
[0063] FIG. 31 is an example listing of a variable duration
software loop with a single wait cycle;
[0064] FIG. 32 is a flow diagram illustrating a first software
dithering method of the present invention;
[0065] FIG. 33 is a diagram illustrating the instruction cur­
rent waveform for a software loop having eight instructions
and eight wait cycles;
[0066] FIG. 34 is a diagram illustrating the power spectral
density for fixed size software loops;
[0067] FIG. 35 is a diagram illustrating the instruction cur­
rent waveform for a software loop with varying wait time;
[0068] FIG. 36 is a diagram illustrating the power spectral
density for a software loop having a variable size;
[0069] FIG. 37 is an example listing of a variable duration
software loop with multiple wait cycles;
[0070] FIG. 38 is a flow diagram illustrating a second soft­
ware dithering method of the present invention;
[0071] FIG. 39 is a diagram illustrating the instruction cur­
rent waveform for a variable duration software loop with
multiple wait cycles;
[0072] FIG. 40 is a diagram illustrating the power spectral
density for a software loop with multiple wait cycles;
[0073] FIG. 41 is an example listing of a software loop with
one or more shuffled instructions;
[0074] FIG. 42 is a flow diagram illustrating a second soft­
ware dithering method of the present invention;
[0075] FIG. 43 is a diagram illustrating the current wave­
form with a different power level for each instruction;
[0076] FIG. 44 is a diagram illustrating the power spectral
density for a software loop with different instruction power;
[0077] FIG. 45 is a diagram illustrating the instruction cur­
rent waveform for a software loop with one or more shuffled
instructions;
[0078] FIG. 46 is a diagram illustrating the power spectral
density for a software loop with one or more shuffled instruc­
tions; and

4
Oct. 22, 2009

[0079] FIG. 47 is a block diagram illustrating hardware
dithering through clock gating.

DETAILED DESCRIPTION OF THE INVENTION

Notation Used Throughout

[0080] The following notation is used throughout this
document.

Terrn

AC
ACL
ACW
ADC
ADPLL
ALU
AM
ASIC
ASIP
AVI
AWS
BIST
BMP
BPF
CMOS
CPU
cu
cw
DAC
dB
DBB
DC
DCO
DCXO
DPA
DPLL
DRAC
DRP
DSL
DSP
EDGE
EDR
EEPROM
EPROM
eSCO
FCC
FCW
FIB
FM
FPGA
FSM
GMSK
GPRS
GPS
GSM
HB
HDL
HFP
I/F
IC
IEEE
IIR
JPG
LAN
LB
LDO
LNA
LO
LPF
MAC
MAP
MBOA
MIM
Mod

Definition

Alternating Current
Asynchronous Connectionless Link
Amplitnde Control Word
Analog to Digital Converter
All Digital Phase Locked Loop
Arithmetic Logic Unit
Amplitnde Modulation
Application Specific Integrated Circuit
Application Specific Instruction-set Processor
Audio Video Interface
Advanced Wireless Services
Built-In Self Test
Windows Bitruap
Band Pass Filter
Complementary Metal Oxide Semiconductor
Central Processing Unit
Control Unit
Continuous Wave
Digital to Analog Converter
Decibel
Digital Baseband
Direct Current
Digitally Controlled Oscillator
Digitally Controlled Crystal Oscillator
Digitally Controlled Power Amplifier
Digital Phase Locked Loop
Digital to RF Amplitnde Conversion
Digital RF Processor or Digital Radio Processor
Digital Subscriber Line
Digital Signal Processor
Enhanced Data Rates for GSM Evolution
Enhanced Data Rate
Electrically Erasable Programmable Read Only Memory
Erasable Progranunable Read Only Memory
Extended Synchronous Connection-Oriented
Federal Communications Commission
Frequency Command Word
Focused Ion Beam
Frequency Modulation
Field Programmable Gate Array
Finite State Machine
Gaussian Minimum Shift Keying
General Packet Radio Service
Global Positioning System
Global System for Mobile communications
High Band
Hardware Description Language
Hands Free Protocol
Interface
Integrated Circuit
Institnte of Electrical and Electronics Engineers
Infinite Impulse Response
Joint Photographic Experts Group
Local Area Network
Low Band
Low Drop Out
Low Noise Amplifier
Local Oscillator
Low Pass Filter
Media Access Control
Media Access Protocol
Multiband OFDM Alliance
Metal Insulator Metal
Modulo

US 2009/0262877 AI

Terrn

MOS
MP3
MPG
MUX
NZIF
OFDM
PA
PAN
PC
PC!
PD
PDA
PE
PHE
PLL
PM
PPA
QoS
RAM
RCU
RF
RFBIST
RMS
ROM
SAM
SAW
sco
SEM
SIM
SoC
SRAM
SYNTH
TDC
TDD
TV
UART
UGS
UMTS
USB
UWB
vco
WCDMA
WiFi
WiMAX
WiMedia
WLAN
WMA
WMAN
WMV
WPAN
XOR
ZIF

-continued

Definition

Metal Oxide Semiconductor
MPEG-1 Audio Layer 3
Moving Picture Experts Group
Multiplexer
Near Zero IF
Orthogonal Frequency Division Multiplexing
Power Amplifier
Personal Area Network
Personal Computer
Personal Computer Interconnect
Phase Detector
Personal Digital Assistant
Phase Error
Phase Error
Phase Locked Loop
Phase Modulation
Pre-Power Amplifier
Quality of Service
Random Access Memory
Reconfigurable Calculation Unit
Radio Frequency
RF Built-In Self Test
Root Mean Squared
Read Only Memory
Sigma-Delta Amplitude Modulation
Surface Acoustic Wave
Synchronous Connection-Oriented
Spectral Emission Mask
Subscriber Identity Module
System on Chip
Static Read Only Memory
Synthesizer
Time to Digital Converter
Time Division Duplex
Television
Universal Asynchronous Transmitter/Receiver
Unsolicited Grant Services
Universal Mobile Telecommunications System
Universal Serial Bus
Ultra Wideband
Voltage Controlled Oscillator
Wideband Code Division Multiple Access
Wireless Fidelity
Worldwide Interoperability for Microwave Access
Radio platform for UWB
Wireless Local Area Network
Windows Media Audio
Wireless Metropolitan Area Network
Windows Media Video
Wireless Personal Area Network
Exclusive Or
Zero IF

Detailed Description of the Invention

[0081] The present invention is a novel and useful appara­
tus for and method of RF spur reduction using computation
spreading and dithering in a digital phase locked loop (DPLL)
architecture. The invention is particularly suitable for use
with a software based phase locked loop (PLL). The proces­
sor-based PLL (i.e. all digital phase-locked loop or ADPLL)
architecture described herein can be used for RF frequency
synthesis in radio transceivers and other applications.

[0082] A software based PLL incorporates a reconfigurable
calculation unit (RCU) that is optimized and programmed to
sequentially perform all the atomic operations of a PLL or any
other desired task in a time sharing manner. An application
specific instruction-set processor (ASIP) incorporating the
RCU is adapted to spread the computation of the atomic

5
Oct. 22, 2009

operations out over and completed within an entire PLL ref­
erence clock period. Each computation being performed at a
much higher processor clock frequency than the PLL refer­
ence clock rate. This functions to significantly reduce the per
cycle current transient generated by the computations. Fur­
ther, the frequency content of the current transients is at the
higher processor clock frequency. This results in a significant
reduction in spurs within sensitive portions of the output
spectrum.
[0083] An example application is provided of the software
based phase locked loop incorporated in a single chip radio,
e.g., Bluetooth, GSM, etc., that integrates the RF circuitry
with the digital baseband (DBB) circuitry on the same die.
[0084] Although the RF spur reduction with dithering
mechanism is applicable to numerous wireless communica­
tion standards and can be incorporated in numerous types of
wireless or wired communication devices such a multimedia
player, mobile station, cellular phone, PDA, DSL modem,
WPAN device, etc., it is described in the context of a Digital
RF Processor (DRP™) based transceiver that may be adapted
to comply with a particular wireless communications stan­
dard such as GSM, Bluetooth, EDGE, WCDMA, WLAN,
WiMax, etc. It is appreciated, however, that the invention is
not limited to use with any particular communication stan­
dard and may be used in optical, wired and wireless applica­
tions. Further, the invention is not limited to use with a spe­
cific modulation scheme but is applicable to numerous
modulation schemes.
[0085] Note that throughout this document, the term com­
munications device is defined as any apparatus or mechanism
adapted to transmit, receive or transmit and receive data
through a medium. The term communications transceiver is
defined as any apparatus or mechanism adapted to transmit
and receive data through a medium. The communications
device or communications transceiver may be adapted to
communicate over any suitable medium, including wireless
or wired media. Examples of wireless media include RF,
infrared, optical, microwave, UWB, Bluetooth, WiMAX,
WiMedia, WiFi, or any other broadband medium, etc.
Examples of wired media include twisted pair, coaxial, opti­
cal fiber, any wired interface (e.g., USB, Firewire, Ethernet,
etc.). The term Ethernet network is defined as a network
compatible with any of the IEEE 802.3 Ethernet standards,
including but not limited to 1 OBase-T, 1 OOBase-T or
1 OOOBase-T over shielded or unshielded twisted pair wiring.
The terms communications channel, link and cable are used
interchangeably. The notation DRP is intended to denote
either a Digital RF Processor or Digital Radio Processor.
References to a Digital RF Processor infer a reference to a
Digital Radio Processor and vice versa.
[0086] The term multimedia player or device is defined as
any apparatus having a display screen and user input means
that is capable of playing audio (e.g., MP3, WMA, etc.), video
(AVI, MPG, WMV, etc.) and/or pictures (JPG, BMP, etc.).
The user input means is typically formed of one or more
manually operated switches, buttons, wheels or other user
input means. Examples of multimedia devices include pocket
sized personal digital assistants (PDAs), personal media
player/recorders, cellular telephones, handheld devices, and
the like.
[0087] Some portions of the detailed descriptions which
follow are presented in terms of procedures, logic blocks,
processing, steps, and other symbolic representations of
operations on data bits within a computer memory. These

US 2009/0262877 AI

descriptions and representations are the means used by those
skilled in the data processing arts to most effectively convey
the substance of their work to others skilled in the art. A
procedure, logic block, process, etc., is generally conceived
to be a self-consistent sequence of steps or instructions lead­
ing to a desired result. The steps require physical manipula­
tions of physical quantities. Usually, though not necessarily,
these quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared
and otherwise manipulated in a computer system. It has
proven convenient at times, principally for reasons of com­
mon usage, to refer to these signals as bits, bytes, words,
values, elements, symbols, characters, terms, numbers, or the
like.
[0088] It should be born in mind that all of the above and
similar terms are to be associated with the appropriate physi­
cal quantities they represent and are merely convenient labels
applied to these quantities. Unless specifically stated other­
wise as apparent from the following discussions, it is appre­
ciated that throughout the present invention, discussions uti­
lizing terms such as 'processing,' 'computing,' 'calculating,'
'determining,' 'displaying' or the like, refer to the action and
processes of a computer system, or similar electronic com­
puting device, that manipulates and transforms data repre­
sented as physical (electronic) quantities within the computer
system's registers and memories into other data similarly
represented as physical quantities within the computer sys­
tem memories or registers or other such information storage,
transmission or display devices.
[0089] The invention can take the form of an entirely hard­
ware embodiment, an entirely general-purpose software
embodiment or an embodiment containing a combination of
hardware and software elements. In one embodiment, a por­
tion of the mechanism of the invention is implemented in
software, which includes but is not limited to firmware, resi­
dent software, object code, assembly code, microcode, etc.
[0090] Furthermore, the invention can take the form of a
computer program product accessible from a computer-us­
able or computer-readable medium providing program code
for use by or in connection with a computer or any instruction
execution system. For the purposes of this description, a
computer-usable or computer readable medium is any appa­
ratus that can contain, store, communicate, propagate, or
transport the program for use by or in connection with the
instruction execution system, apparatus, or device, e.g.,
floppy disks, removable hard drives, computer files compris­
ing source code or object code, flash semiconductor memory
(USB flash drives, etc.), ROM, EPROM, or other semicon­
ductor memory devices.

Single Chip Radio

[0091] A block diagram illustrating a single chip radio
incorporating a software based ADPLL mechanism of the
present invention is shown in FIG. 4. For illustration purposes
only, the transmitter, as shown, is adapted for the GSM/
EDGE/WCDMA cellular standards. It is appreciated, how­
ever, that one skilled in the communication arts can adapt the
transmitter and receiver illustrated herein to other modula­
tions and communication standards as well without departing
from the spirit and scope of the present invention.
[0092] The radio, generally referenced 30, comprises a
radio integrated circuit 31 coupled to a crystal 38, RF front
end module 46 coupled to an antenna 44, and battery man­
agement circuit 32 coupled to battery 68. The radio chip 31

6
Oct. 22, 2009

comprises a script processor 60, digital baseband (DBB) pro­
cessor 61, memory 62 (e.g., static RAM), TX block 42, RX
block 58, digitally controlled crystal oscillator (DCXO) 50,
slicer 51, power management unit 34 and RF built-in self test
(BIST) 36. The TX block comprises high speed and low speed
digital logic block 40 including ~ll modulators (not shown),
phase domain calculator using dithering (ASIP) 52, digitally
controlled oscillator (DCO) 56, accumulator 59, sampler 69
and digitally controlled power amplifier (DPA) 48. The RX
block comprises a low noise transconductance amplifier 63,
current sampler 64, discrete time processing block 65, analog
to digital converter (ADC) 66 and digital logic block 67.

[0093] The principles presented herein have been used to
develop three generations of a Digital RF Processor (DRP):
single-chip Bluetooth, GSM and GSM/EDGE radios realized
in 130 nm, 90 nm and 65 nm digital CMOS process technolo­
gies, respectively. This architecture is also used as the foun­
dation for a UMTS single-chip radio manufactured using a 45
nm CMOS process. The common architecture is highlighted
with features added specific to the cellular radio. The all
digital phase locked loop (ADPLL) based transmitter
employs a polar architecture with all digital phase/frequency
and amplitude modulation paths. The receiver employs a
discrete-time architecture in which the RF signal is directly
sampled and processed using analog and digital signal pro­
cessing techniques.
[0094] A key component is the digitally controlled oscilla­
tor (DCO) 56, which avoids any analog tuning controls. A
digitally-controlled crystal oscillator (DCXO) generates a
high-quality base station-synchronized frequency reference
such that the transmitted carrier frequencies and the received
symbol rates are accurate to within 0.1 ppm. Fine frequency
resolution for both DCO and DCXO is achieved through
high-speed ~ll dithering of their varactors. Digital logic built
around the DCO realizes an all-digital PLL (ADPLL) that is
used as a local oscillator for both the transmitter and receiver.
The polar transmitter architecture utilizes the wide band direct
frequency modulation capability of the ADPLL and a digi­
tally controlled power amplifier (DPA) 48 for the amplitude
modulation. The D PA operates in near-class-E mode and uses
an array of nMOS transistor switches to regulate the RF
amplitude. It is followed by a matching network and an exter­
nal front-end module 46, which comprises a power amplifier
(PA), a transmit/receive switch for the common antenna 44
and RX surface acoustic wave (SAW) filters. Fine amplitude
resolution is achieved through high-speed ~ll dithering of the
DPA nMOS transistors.
[0095] The receiver 58 employs a discrete-time architec­
ture in which the RF signal is directly sampled at the Nyquist
rate of the RF carrier and processed using analog and digital
signal processing techniques. The transceiver is integrated
with a script processor 60, dedicated digital base band pro­
cessor 61 (i.e. ARM family processor and/or DSP) and
SRAM memory 62. The script processor handles various TX
and RX calibration, compensation, sequencing and lower­
rate data path tasks and encapsulates the transceiver complex­
ity in order to present a much simpler software programming
model.
[0096] The frequency reference (FREF) is generated on­
chip by a 26 MHz (or any other desired frequency, such as 13
or 38.4 MHz) digitally controlled crystal oscillator (DCXO)
50, which provides negative resistance to sustain the oscilla­
tions. The output of the DCXO is coupled to slicer 51. The
output of the slicer is input to the phase domain calculator

US 2009/0262877 AI

which comprises a software based PLL in accordance with
the invention and described in more detail infra.
[0097] An integrated power management (PM) system 34
is connected to an external battery management circuit 32 that
conditions and stabilizes the supply voltage. The PM com­
prises multiple low drop out (LDO) regulators that provide
internal supply voltages and also isolate supply noise
between circuits, especially protecting the DCO. The RF
built-in self-test (RFBIST) 36 performs autonomous phase
noise and modulation distortion testing, various loopback
configurations for bit-error rate measurements and imple­
ments the DPA calibration and BIST mechanism. The trans­
ceiver is integrated with the digital baseband, SRAM memory
in a complete system-on-chip (SoC) solution. Almost all the
clocks on this SoC are derived from and are synchronous to
the RF oscillator clock. This helps to reduce susceptibility to
the noise generated through clocking of the massive digital
logic.
[0098] The transmitter comprises a polar architecture in
which the amplitude and phase/frequency modulations are
implemented in separate paths. Transmitted symbols gener­
ated in the digital baseband (DBB) processor are first pulse­
shape filtered in the Cartesian coordinate system. The filtered
in-phase (I) and quadrature (Q) samples are then converted
through a CORDIC algorithm into amplitude and phase
samples of the polar coordinate system. The phase is then
differentiated to obtain frequency deviation. The polar signals
are subsequently conditioned through signal processing to
sufficiently increase the sampling rate in order to reduce the
quantization noise density and lessen the effects of the modu­
lating spectrum replicas.
[0099] A more detailed description of the operation of the
ADPLL can be found in U.S. Patent Publication No. 2006/
0033582 A1, published Feb. 16, 2006, to Staszewski eta!.,
entitled "Gain Calibration of a Digital Controlled Oscillator,"
U.S. Patent Publication No. 2006/0038710 A1, published
Feb. 23, 2006, Staszewski eta!., entitled "Hybrid Polar/Car­
tesian Digital Modulator" and U.S. Pat. No. 6,809,598, to
Staszewski eta!., entitled "Hybrid Of Predictive And Closed­
Loop Phase-Domain Digital PLLArchitecture," all of which
are incorporated herein by reference in their entirety.

Mobile Device/Cellular Phone/PDA System

[0100] A simplified block diagram illustrating an example
mobile communication device incorporating the software
based DPLL with dithering mechanism of the present inven­
tion is shown in FIG. 5. The communication device may
comprise any suitable wired or wireless device such as a
multimedia player, mobile station, mobile device, cellular
phone, PDA, wireless personal area network (WPAN) device,
Bluetooth EDR device, etc. For illustration purposes only, the
communication device is shown as a cellular phone or smart
phone. Note that this example is not intended to limit the
scope of the invention as the software based DPLL using
dithering mechanism of the present invention can be imple­
mented in a wide variety of wireless and wired communica­
tion devices.
[0101] The mobile station, generally referenced 70, com­
prises a baseband processor or CPU 71 having analog and
digital portions. The MS may comprise a plurality of RF
transceivers 94 and associated antenna(s) 98. RF transceivers
for the basic cellular link and any number of other wireless
standards and RATs may be included. Examples include, but
are not limited to, Global System for Mobile Communication

7
Oct. 22, 2009

(GSM)/GPRS/EDGE 3G; CDMA; WiMAX for providing
WiMAX wireless connectivity when within the range of a
WiMAX wireless network using OFDMA techniques; Blue­
tooth for providing Bluetooth wireless connectivity when
within the range of a Bluetooth wireless network; WLAN for
providing wireless connectivity when in a hot spot or within
the range of an ad hoc, infrastructure or mesh based wireless
LAN network; near field communications; 60G device;
UWB; etc. One or more of the RF transceivers may comprise
an additional a plurality of antennas to provide antenna diver­
sity which yields improved radio performance. The mobile
station may also comprise internal RAM and ROM memory
111, Flash memory 112 and external memory 114. Note that
the mechanism of the invention is operative to not only reduce
spurious content or emissions of a wireless standard pertain­
ing to a particular radio but to also reduce interference
between different radios operating simultaneously, which
enhances coexistence.
[0102] Several user interface devices include microphone
(s) 84, speaker(s) 82 and associated audio codec 80 or other
multimedia codecs 75, a keypad for entering dialing digits 86,
vibrator 88 for alerting a user, camera and related circuitry
101, a TV tuner 102 and associated antenna 104, display(s)
106 and associated display controller 108 and GPS receiver
90 and associated antenna 92. A USB or other interface con­
nection 78 (e.g., SPI, SDIO, PCI, etc.) provides a serial link to
a user's PC or other device. An FM receiver 72 and antenna 74
provide the user the ability to listen to FM broadcasts. SIM
card 116 provides the interface to a user's SIM card for storing
user data such as address book entries, etc. Note that the SIM
card shown is intended to represent any type of smart card
used for holding user related information such as identity and
contact information, Authentication Authorization and
Accounting (AAA), profile information, etc. Different stan­
dards use different names, for example, SIM for GSM, USIM
for UMTS and ISIM for IMS and LTE.
[0103] The mobile station comprises software based DPLL
using dithering blocks 125 which may be implemented in any
number of the RF transceivers 94. Alternatively, or in addition
to, the software based DPLL using dithering block 128 may
be implemented as a task executed by the baseband processor
71. The software based DPLL using dithering blocks 125, 128
are adapted to implement the software based DPLL using
dithering mechanism of the present invention as described in
more detail infra. In operation, the software based DPLL
using dithering blocks may be implemented as hardware,
software or as a combination of hardware and software.
Implemented as a software task, the program code operative
to implement the software based DPLL using dithering
mechanism of the present invention is stored in one or more
memories 111, 112 or 114 or local memories within the
baseband processor.
[0104] Portable power is provided by the battery 124
coupled to power management circuitry 122. External power
is provided via USB power 118 or an AC/DC adapter 120
connected to the battery management circuitry which is
operative to manage the charging and discharging of the
battery 124.

Example ADPLL Polar Transmitter

[0105] A block diagram illustrating an example ADPLL­
based polar transmitter for wireless applications is shown in
FIG. 6. The exampleADPLL shown is used as the basis for a
software based DPLL using dithering mechanism described

US 2009/0262877 AI

in more detail infra. A more detailed description of the opera­
tion of the ADPLL can be found in U.S. Patent Publication
No. 2006/0033582 A1, published Feb. 16, 2006, to Stasze­
wski eta!., entitled "Gain Calibration of a Digital Controlled
Oscillator," U.S. Patent Publication No. 2006/0038710 A1,
published Feb. 23, 2006, Staszewski et a!., entitled "Hybrid
Polar/Cartesian Digital Modulator" and U.S. Pat. No. 6,809,
598, to Staszewski eta!., entitled "Hybrid Of Predictive And
Closed-Loop Phase-Domain Digital PLLArchitecture," all of
which are incorporated herein by reference in their entirety.

[0106] For illustration purposes only, the transmitter, as
shown, is adapted for the GSM/EDGE/WCDMA cellular
standards. It is appreciated, however, that one skilled in the
communication arts can adapt the transmitter illustrated
herein to other modulations and communication standards as
well without departing from the spirit and scope of the present
invention.

[0107] The transmitter, generally referenced 130, is well­
suited for a deep-submicron CMOS implementation. The
transmitter comprises a complex pulse shaping filter 168,
amplitude modulation (AM) block 169 andADPLL 132. The
circuit 130 is operative to perform complex modulation in the
polar domain in addition to the generation of the local oscil­
lator (LO) signal for the receiver. All clocks in the system are
derived directly from this source. Note that the transmitter is
constructed using digital techniques that exploit the high
speed and high density of the advanced CMOS, while avoid­
ing problems related to voltage headroom. The ADPLL cir­
cuit replaces a conventional RF synthesizer architecture
(based on a voltage-controlled oscillator (VCO) and a phase/
frequency detector and charge-pump combination), with a
digitally controlled oscillator (DCO) 148 and a time-to-digi­
tal converter (TDC) 162. All inputs and outputs are digital and
some even at multi-GHz frequency.

[0108] The core of the ADPLL is a digitally controlled
oscillator (DCO) 148 adapted to generate the RF oscillator
clock CKV. The oscillator core (not shown) operates at a
multiple of the 1.6-2.0 GHz (e.g., 4) high band frequency or
at a multiple of the 0.8-1.0 GHz low band frequency (e.g., 8).
Note that typically, the multiple is a power-of-two but any
other suitable integer or even fractional frequency relation­
ship may be advantageous. The output of the DCO is then
divided for precise generation of RX quadrature signals, and
for use as the transmitter's carrier frequency. The single DCO
is shared between transmitter and receiver and is used for both
the high frequency bands (HB) and the low frequency bands
(LB). In addition to the integer control of the DCO, at least
3-bits of the minimal varactor size used are dedicated for ~ll.
dithering in order to improve frequency resolution. The DCO
comprises a plurality ofvaractor banks, which may be real­
ized as n-poly/n-well inversion type MOS capacitor (MOS­
CAP) devices or Metal Insulator Metal (MIM) devices that
operate in the flat regions of their C-V curves to assist digital
control. The output of the DCO is a modulated digital signal
at fRF" This signal is input to the pre-power amplifier (PPA)
152. It is also input to the RF low band pre-power amplifier
154 after divide by two via divider 150.

[0109] The expected variable frequency fvis related to the
reference frequency fR by the frequency command word
(FCW).

8

FCW[k] = E(fv[k])
fR

Oct. 22, 2009

(1)

The FCW is time variant and is allowed to change with every
cycle T R= 1/fR of the frequency reference clock. With W p=24
the word length of the fractional part of FCW, the ADPLL
provides fine frequency control with 1.5 Hz accuracy, accord­
ingto:

(2)

The number of integer bits WI=8 has been chosen to fully
cover the GSM/EDGE and partial WCDMA band frequency
range of fv=1,600-2,000 MHz with an arbitrary reference
frequency fR~8 MHz.
[0110] The ADPLL operates in a digitally-synchronous
fixed-point phase domain as follows: The variable phase
accumulator 156 determines the variable phase Rv(i] by
counting the number of rising clock transitions of the DCO
oscillator clock CKV as expressed below.

;

Rv[t] = ~1
(3)

l=O

The index i indicates the DCO edge activity. The variable
phase Rv(i] is sampled via sampler 158 to yield sampled
FREF variable phase Rv(k], where k is the index of the FREF
edge activity. The sampled FREF variable phase Rv(k] is
fixed-point concatenated with the normalized time-to-digital
converter (TDC) 162 output E[k]. The TDC measures and
quantizes the time differences between the frequency refer­
ence FREF and the DCO clock edges. The sampled differen­
tiated (via block 160) variable phase is subtracted from the
frequency command word (FCW) by the digital frequency
detector 138. The frequency error fE[k] samples

fE[k]~ FCW- [(R vfk}-E{k])-(R vfk-1]-E[k-1])] (4)

are accumulated via the frequency error accumulator 140 to
create the phase error <P£[k] samples

k

¢E[k] = ~fE[k]
(5)

l=O

which are then filtered by a fourth order IIR loop filter 142 and
scaled by a proportional loop attenuator a. A parallel feed
with coefficient p adds an integrated term to create type-II
loop characteristics which suppress the DCO flicker noise.
[0111] The IIR filter is a cascade offour single stage filters,
each satisfying the following equation:

y[kj~(1-'-)-y[k-1]+h[k]

wherein
[0112] x[k] is the current input;
[0113] y[k] is the current output;
[0114] k is the time index;

(6)

US 2009/0262877 AI

[0115] X is the configurable coefficient;
The 4-pole IIR loop filter attenuates the reference and TDC
quantization noise with an 80 dB/dec slope, primarily to meet
the GSM/EDGE spectral mask requirements at 400kHz off­
set. The filtered and scaled phase error samples are then
multiplied by the DCO gain Knco normalization factor fRI

Knc9 via multiplier 146, where fR is the reference frequency
and Knco is the DCO gain estimate, to make the loop char­
acteristics and modulation independent from Knco· The
modulating data is injected into two points oftheADPLL for
direct frequency modulation, via adders 136 and 144. A hit­
less gear-shifting mechanism for the dynamic loop band­
width control serves to reduce the settling time. It changes the
loop attenuator a several times during the frequency locking
while adding the (a/a2 -1)<jl 1 de offset to the phase error,
where indices 1 and 2 denote before and after the event,
respectively. Note that <jl 1=<jl2 , since the phase is to be con-
tinuous.
[0116] The frequency reference FREF is input to the
retimer 166 and provides the clock for the TDC 162. The
FREF input is resampled by the RF oscillator clock CKV via
retimer block 166 which may comprise a flip flop or register
clocked by the reference frequency FREF. The resulting
retimed clock (CKR) is distributed and used throughout the
system. This ensures that the massive digital logic is clocked
after the quiet interval of the phase error detection by the
TDC. Note that in the example embodiment described herein,
the ADPLL is a discrete-time sampled system implemented
with all digital components connected with all digital signals.

Software Based ADPLL Architecture

[0117] A simplified block diagram illustrating an embodi­
ment of the software basedADPLL incorporating a processor
based phase domain calculator is shown in FIG. 7. The
ADPLL circuit, generally referenced 180, comprises a phase
domain calculator 174, DCO 186, integer feedback block
188, fractional feedback block 189 and programmable frac­
tional-N clock divider 182.
[0118] In operation, the phase domain calculator replaces
the conventional ADPLL circuit with a software based
ADPLL. As with the conventional ADPLL, it is operative to
generate the DLO update that is input to the DCO 186 which
in turn generates the RF output frequency clock CKV. The
phase domain calculator receives the FCW commands, vari­
able phase information (i.e. integer and fractional feedback)
and the reference frequency clock FREF, which typically
ranges between 13 and 52 MHz. The processing clock output
of the programmable clock divider 182 runs at a frequency
significantly higher than FREF, such as in the range 200 to
600 MHz, for example.
[0119] In accordance with the invention, the phase domain
calculator performs the ADPLL operations serially rather
than in parallel. In order the complete the ADPLL computa­
tion within reference clock cycle, the much faster processor
clock is used to clock the phase domain calculator internal
circuitry.
[0120] The solution uses a reconfigurable computational
unit (RCU) or ALU (described infra) that is time shared for
most or all computations within theADPLL. The RCU and its
related configuration control logic (constituting a special pur­
pose microcomputer) replaces the dedicated and distributed
random logic within a conventional ADPLL. The RCU is
controlled via microcode stored in on-chip memory such as
random access memory (RAM), read only memory (ROM),

9
Oct. 22, 2009

Flash memory, etc. Since the computational unit is time
shared among most operations, it is operated at a much higher
clock rate than the conventional ADPLL which performs all
calculations in parallel using dedicated hardware circuits.
The RCU circuitry is optimized to perform all the required
ADPLL atomic computations within one reference clock
cycle.

[0121] A block diagram illustrating an example embodi­
ment of the phase domain calculator of the present invention
in more detail is shown in FIG. 8. The phase domain calcu­
lator, generally referenced 190, comprises anALU (or RCU)
202, instruction and data memory 192, register file 194,
sequencer 196, latches 208, 206, multiplexers 209, 198, 200,
204.

[0122] The instructions for implementing the ADPLL
operation are stored in the instruction memory. Instructions
are input to the sequencer which performs the instruction
decoding and generates the appropriate signals to execute
each instruction. The register file stores intermediate values
calculated by the ALU.

[0123] A timing diagram illustrating the processing clock
and reference frequency timing is shown in FIG. 9. As shown,
the processing clock 210, used to clock the memory,
sequencer and register file, is at a significantly higher clock
rate than the reference clock FREF 212. This is required in
order the complete an operation cycle of the ADPLL within a
single reference clock period.

[0124] A block diagram illustrating an instruction view of
the software basedADPLL architecture of the present inven­
tion is shown in FIG. 10. The circuit, generally referenced
220, comprises a phase calculation unit 222, gain normaliza­
tion 238, DCO 240, gain calibration 242, accumulator/incre­
menter 244 and variable phase sampler 246. The phase cal­
culation unit shows an instruction view of the ADPLL
architecture performed in software. In particular, the phase
calculation unit 222 comprises a phase detector 224, fre­
quency error accumulator 226, IIR loop filter 228, a propor­
tional gainmultiplier230, IIRfilter232, adder234, DCO gain
multiplier 236, offset phase error adder248, phase error accu­
mulator 250 and integral or p gain multiplier 252. Both pro­
portional and integral multipliers preferably use power-of­
two arithmetic so that their respective multipliers could be
implemented as bit-shift operators. For non-power-of-two
arithmetic, sum-of-power-of-two or even full multipliers can
be used with the consequent increase in circuit cost and com­
plexity.
[0125] The ADPLL circuit shown is an ADPLL architec­
ture that is commonly used in wireless applications for RF
frequency generation. In this digital architecture, the tradi­
tional VCO is replaced with a digitally controlled oscillator
(DCO) and the oscillating frequency of the DCO is controlled
by a frequency command word (FCW) instead of the refer­
ence clock, as described in detail supra. The phase detecting
and filtering parts are all digital with intensive digital signal
processing involved as highlighted.

[0126] In operation, the ADPLL operation is partitioned
into a plurality of atomic operations, wherein each atomic
operation performs a complete processing step within the
ADPLL. For example, an adding operation representing
adder 224 comprises one atomic operation. Similarly, accu­
mulation block 226 and each offour elemental first-order IIR
operations in IIR filter block 228 also comprise a single
atomic operation each. Each atomic operation is performed

US 2009/0262877 AI

by a separate instruction. Individual instructions are provided
for each atomic operation in the ADPLL (or any other task).
[0127] The computation elements within the phase calcu­
lation block 222 are the elements implemented and executed
as software instructions. The computations within block 222
can be expressed as pseudo code as shown in the following
Listing 1.

Listing 1: Sequential pseudo-code for ADPLL phase computation

Ll: y16 ~ y15- S1
S1 ~ y15
y1 ~FCW- y16
y2 ~ y2 + y1
y3 ~ IIR (a1, y2, y3)

y4 ~ IIR (a2, y3, y4)
y5 ~ IIR (a3, y4, y5)
y6 ~ IIR (a4, y5, y6)
y7 ~ SHL (y6, alpha)
yll ~ IIR (gs, y7, yll)
y9 ~ y6- PhE
y10~y10+y9

y12 ~ SHL (y10, rho)
y13 ~ y11 + y12
y14 ~ y13 *gain
jumpLl

I I S 1 is the store element
II delay

I I accwnulation
I I 4th order infinite impulse response(IIR)
filter

I I shift operation

I I implies accwnulation

I I operates in a continuous loop

[0128] As described supra, in prior art ADPLL circuits, all
ADPLL phase computations are implemented using dedi­
cated hardware (i.e. a hardwired design), which limits the
ability to adjust theADPLL algorithm. In accordance with the
software based architecture of the present invention, these
ADPLL functions are integrated within a processor using
shared hardware thereby providing significant flexibility to
the ADPLL algorithm.

Processor Based ADPLL Architecture

[0129] A block diagram illustrating an example processor
based software ADPLL architecture of the present invention
is shown in FIG. 11. The AD PLL circuit, generally referenced
260, comprises an application specific instruction-set proces­
sor (ASIP) 262, DCO 286, accumulator 288 and variable
phase sampler 289. The ASIP 262 comprises instruction
memory 264, fetch block 266, decode block 268, data bus
278, RCU 270, S-unit 272, L-unit 274, A-unit 276, register
file 280, data memory 282 and interface 284.
[0130] All ADPLL computations as delineated in Listing 1
above are incorporated into a so-called Application Specific
Instruction-set Processor (ASIP) 262. It is appreciated that a
general purpose processor may also be used to perform the
ADPLL operation. An ASIP, however, is far more efficient
due to the instruction set being adapted to perform a small but
dedicated set of atomic operations.
[0131] In operation, theASIP processor stores theADPLL
software instructions in the instruction memory 264. The
instructions are then fetched from the instruction memory via
fetch block 266 and fed into the decoding block 268. All
required control signals are generated through the decoding
block to control the operation of the various computational
units, including the A-Unit 276 for performing arithmetic
operations, e.g., addition, subtraction, etc., L-Unit 274 for
performing logic operations, e.g., AND, OR, XOR, etc. and
S-Unit 272 for performing data storage and movement opera­
tions. A reconfigurable calculation unit (RCU) 270 is con­
structed to provide application specific instructions for the
ADPLL. The RCU, for example, is operative to implement

10
Oct. 22, 2009

the !-stage IIR filtering operation within a single instruction.
It is noted that the application driven customized instruction
set is what differentiates an ASIP from a general purpose
processor which performs ADPLL computations much less
efficiently to the extent that it may not even be able to com­
plete the necessary computations within the reference clock
period.
[0132] The ASIP processor is operative to read the FCW
and variable phase (Ph V) inputs, sequentially perform all the
computations (i.e. atomic operations) required for the
ADPLL as presented in Listing 1 within one system reference
clock cycle and send the resulting tuning word DCO_TUNE
(i.e. DLO update) to the DCO. which in tum uses the tuning
word to adjust its output frequency. It is important to note that
all the computations are performed via the programmed soft­
ware stored in instruction memory of the ASIP. Note also that
the majority of the computations are performed by the RCU,
which is designed specifically to implement the atomic opera­
tions of the targetedADPLL application.

Reconfigurable Calculation Unit (RCU)

[0133] The structure of the RCU will now be described in
more detail. As described above, all the computations in
Listing 1 are described in terms of atomic arithmetic opera­
tions, such as additions, subtractions, shifting, multiplica­
tions, etc. and as more complicated operations, such as IIR
filtering. A prior art hardwired implementation simply instan­
tiates the number of hardware operators equal to the number
of atomic operations required by theADPLL algorithm. This,
however, has its drawbacks as discussed supra.
[0134] The ASIP based design of the present invention
utilizes one or more reconfigurable computational units that
are used to perform all arithmetic operations implementing
theADPLL algorithm. This computational unit is "recycled"
sequentially among all the arithmetic operations within a
single cycle oftheADPLL system clock. The internal state of
theADPLL is stored between clock cycles in internal storage
elements (i.e. register file, data memory, etc.). An important
aspect of the RCU design is the greatly increased application
efficiency along with a maximization of resource reuse.
[0135] Detailed knowledge of the task to be implemented
(e.g., ADPLL algorithm) is important in creating the func­
tionality of the computational unit in order to optimize its
complexity and system throughput requirements. In the case
of an ADPLL algorithm, all the elemental ADPLL computa­
tions (except for IIR filtering) are either add/subtract or
power-of-two multiply operation. Therefore, the invention
provides for a single IIR computation that has been optimized
to be represented as a single operation in the computational
unit.
[0136] FIGS. 12A, 12B, 12C and 12D illustrate the map­
ping process and the resulting configuration of the RCU. In
particular, FIG. 12A is a diagram illustrating the output and
transfer function equations for the infinite impulse response
(IIR) filter portion of the ADPLL. FIG. 12B is an equivalent
block diagram implementing the output equation shown in
FIG. 12A. The circuit, generally referenced 290, comprises
multipliers 292, 298, adders 294, 299 and unit delay 296.
[0137] FIG. 12C is an equivalent block diagram imple­
menting the output equation shown in FIG. 12A whereby the
multiplication operations have been replaced with shift
operations. The circuit, generally referenced 300, comprises
shift operations 302,309, adders 304,308 and unit delay 306.
FIG. 12D is a diagram illustrating the resultant reconfigurable
calculation unit (RCU) implementing the output equation
shown in FIG. 12A. The RCU, generally referenced 310,
comprises shifter 312, 318 and adders 314, 316. The unit

US 2009/0262877 AI

delay element is replaced with data lines Rb and Rd for
reading and writing to an external memory such as the register
file or data memory.
[0138] Thus, for application to anADPLL, the multiplica­
tion operation in the IIR filter is simplified with a shifting
operation. The final RCU in 12D is a pure computation unit
without any storage element. To map the IIR equation below

to the RCU unit, the following applies:
[0139] xk maps to RCU input Ra;
[0140] Yk-l maps to RCU input Rb;
[0141] ykmaps to RCU output Rd;

(7)

[0142] The RCU unit is made further configurable to
accommodate all the main computations for the AD PLL in an
efficient manner. A block diagram illustrating an example
RCU unit for implementing theADPLL circuit way is shown
in FIG. 13. The RCU and related circuitry, generally refer­
enced 320, comprises a plurality of elements as follows: two
data inputs (Ra, Rb), two data outputs (Rd_st, Rd), three
atomic computation units (first addition/subtraction 324,
shifter 326, second addition/subtraction 328), two latch/stor­
age elements (input latch S_d 336 and output latch Rd 330),
local registers for data storage, e.g., shift amount a, FCW 340,
PhE 342, multiplexers for data steering 332, 334 and control/
configure signals.
[0143] In operation, the RCU takes input data Ra and goes
through the first addition/subtraction followed by a shifting
operation followed by a second addition/subtraction. The
data is then sent to the outside register file Rd_st or latched
(Rd) for the next computation. An input latching element
(S_d) is included as part of a differentiation operation. All the
computation units including the data paths inside the RCU are
configurable with the control/configure signals generated by
the ASIP decoding block.
[0144] Table 1 below shows the mapping of the customized
instruction set provided by the RCU and their corresponding
targeted computations in the ADPLL.

TABLE 1

Customized instructions and their
corresponding computations in the ADPLL

Computations inADPLL

L1: y16 ~ y15- S_d
S_d ~y15
yl ~FCW- y16
y2 ~ y2 + yl
y3 ~ IIR (al, y2, y3)
y4 ~ IIR (a2, y3, y4)
y5 ~ IIR (a3, y4, y5)
y6 ~ IIR (a4, y5, y6)
y7 ~ SHR (y6, alpha)
yll ~ IIR(gs, y7, yll)
y9 ~ y6- PhE
ylO~y10+y9

y12 ~ SHR (ylO, rho)
y13 ~ yll + y12
y14 ~ y13 *gain
jumpLl

Customized Instructions

F_Diff(y15, y16)

F_PheAcc (yl, y2)

F _IIRl (y2, y3)
F _IIR2 (y3, y4)
F _IIR3 (y4, y5)
F _IIR4 (y5, y6)
F _SHR (y6, y7)
F_IIRgs (y7, yll)
F _IntAcc (y6, ylO)

F_SHRAdd (ylO, yll, y13)

F_Gain()
NA

[0145] Detailed descriptions for most of the instructions in
Table 1 above are provided below. For each instruction, a
corresponding figure is provided illustrating the data paths
and computation elements in the RCU used in executing the
instruction. Elements in each of the figures described below
operate as described above in connection with FIG. 13. Fur-

11
Oct. 22, 2009

ther, the bold lines or arrows in each figure highlight the data
path for that particular instruction.

F _Difflnstruction

[0146]

F_Diff(y15, y16): yi6~yi5-S_d

S_d~yiS

A block diagram illustrating the RCU unit 350 for imple­
menting the F _Diff() instruction is shown in FIG. 14. The
F _Diff instruction implements a differentiation operation.
The bold arrow lines highlight the data path in the RCU. Input
y15 is received and the first addition/subtraction unit is
bypassed (e.g., the second or negating input to the first adder
is set to zero). The shifting unit is also bypassed and a sub­
traction (via the second addition/subtraction unit) is per­
formed with local register S_d. The result y16 is output via
Rd_st. The instruction also updates S_d with input y15 via
register latch S_d.

F _PheAcc Instruction

[0147]

F_PheAcc(y16,y2):yl~FCW-y16

y2~y2+yl;

A block diagram illustrating the RCU unit 352 for imple­
menting the F _PheAcc() instruction is shown in FIG. 15.
This instruction implements a subtraction plus an accumula­
tion operation. It takes the input y16, performs the accumu­
lation operation using the first addition/subtraction unit,
bypasses any shifting (i.e. the shifter is configured for pass
through operation). A subtraction operation with local regis­
ter FCW is then performed. The accumulation is done on the
Rd register latch.

F _IIR Instruction

[0148]

F_IIR(): Rd~Rb»(l-a)+Ra»a

A block diagram illustrating the RCU unit 354 for imple­
menting the F _IIR() instruction is shown in FIG. 16. This
instruction implements an IIR filtering operation. The shift
amount 'a' is pre-set locally within the RCU. Thus, the RCU
is optimized to have the capability of performing an IIR filter
operation in a single instruction cycle. This permits an effi­
cient computation of the atomic operations needed to imple­
ment the ADPLL within a single reference clock period.

F _SHR Instruction

[0149]

F_SHR(Ra, Rd): Rd~Ra»a

A block diagram illustrating the RCU unit 356 for imple­
menting the F _SHR() instruction is shown in FIG. 17. This
instruction implements a shifting operation. The shift amount
'a' is pre-set locally within the RCU. The two addition/sub­
traction units are bypassed for this instruction.

F _IntAcc Instruction

[0150]

F_IntAcc(y6,ylO): y9~y6-PhE

US 2009/0262877 AI

A block diagram illustrating the RCU unit 358 for imple­
menting the F _IntAcc() instruction is shown in FIG. 18. This
instruction implements a subtraction and an accumulation
operation. It takes the input y16, performs an accumulation in
the first addition/subtraction unit and then bypasses the
shifter. A subtraction is then performed using local register
PhE.

F SHRAdd Instruction

[0151]

F_SHRAdd(ylO, yll, y13): y12~SHR(y10, rho)

y13~yll+y12

A block diagram illustrating the RCU unit 360 for imple­
menting the F _SHRAdd() instruction is shown in FIG. 19.
This instruction implements a shifting operation followed by
an addition operation. The shift amount RHO is set locally in
the RCU. Input y10 is received, the first addition/subtraction
unit is bypassed and then a shifting operation is performed.
The shifter output then undergoes an addition operation via
the second addition/subtraction unit.

F _Gain Instruction

[0152] The F _Gain() instruction performs a multiplication
by a gain value. In the case where the gain value is a power of
two, the shift operation is used to perform this instruction. For
non power of two gain values, a multiplier in the RCU is used
(not shown).
[0153] In addition to the instructions described in detail
hereinabove, the RCU comprises other customized instruc­
tions that are needed for general purpose applications, such as
for setting RCU local register values, etc.

RF Spur Reduction

[0154] The effects of the software based ADPLL on RF
spur reduction will now be described. As described supra, in
prior art single-chip radios, the phase domain calculation
portion of the ADPLL signal processing is traditionally
implemented using dedicated random logic gates. In such an
implementation, all computations are initiated on a rising
edge of the ADPLL system clock and latched on the subse­
quent rising edge of the clock. This is shown in FIG. 20 which
illustrates a timing diagram of several ADPLL processing
clock options and the current spikes resulting therefrom.
Trace 370 is the FREF system reference clock while trace 37 4
represents the processor clock.
[0155] Since the majority of circuit switching activity in the
PLL (and also other close-in circuitry) is centered on a rising
edge of the FREF system clock, most of the digital current is
being switched at this edge as well, as indicated by trace 372.
It is noted that depending on the particular implementation of
the flip-flop registers, the current induced by the falling edge
of the clock could be substantial. These digital current surges
find their way into on-chip DCO and PA circuit nodes in the
transmitter and LNA and mixer nodes in the receiver via
various parasitic coupling mechanisms. The current rush
energy due to digital processing at the system clock rate gets
upconverted into the RF spectrum by the DCO, resulting in
unacceptable RF spurs that are close in frequency to the
carrier or fall into the protected frequency bands, such as the
receive band, GPS band, etc. The Federal Communications
Commission (FCC) rules and numerous wireless communi­
cation standards place very low limits on the energy outside of
the information carrying frequency range that is allowed to be
radiated from wireless terminals. In the receiver, the spurious

12
Oct. 22, 2009

tones in the local oscillator (LO) can degrade blocking or
interferer performance through reciprocal mixing.
[0156] These low frequency RF spurs are normally very
difficult to filter out in a wireless terminal before they are
radiated by the antenna because of their proximity in the
spectrum to the carrier as shown in FIG. 21. The FREF clock
spurs 384 are shown around the carrier 382. The filtering
envelope 380 will not sufficiently attenuate the spurs to meet
the various wireless standards. This is because a high order
filtering is required to block the undesired energy, i.e. a steep
filter envelope is required. The typical combined filtering
effects of the PA (power amplifier), SAW filter and antenna
filter out only a portion of the energy of these undesired RF
spurs, thus making FCC rules and wireless standard compli­
ance extremely difficult to meet.
[0157] In contrast, the mechanism of the present invention
is operative to perform the atomic operations serially at the
much faster processor rate. At each processor cycle, only a
single instruction is executed resulting in reduced current
transients being generated, as indicated in trace 376. This
results in significantly reduced RF spur generation. In the
present invention, the effects these generated spurs have on
RF performance are two-fold: (1) the spurs are shifted to
higher frequencies where they are easier to filter out by the
oscillator's LC tank, DPA matching network, PA matching
network, bandpass filtering in the RF front-end module, as
well as overall parasitic RC (resistor-capacitor) network; and
(2) the energy of each spur is reduced.
[0158] In accordance with the invention, the software based
ADPLL significantly reduces the generation of RF spurs in
sensitive frequency bands of the DRP by changing the fre­
quency plan of the switching logic gates. The ASIP/RCU
performs the bulk of computations at the processor clock rate
which is much higher in frequency than that of the system
reference clock (FREF). This results in the RF spurs being
shifted outside the sensitive regions close to the carrier fre­
quency as shown in FIG. 22. The processing clock spurs 392
are now far away from the carrier 392 and the filtering enve­
lope 390 is able to remove these spurs with ease.
[0159] It is noted that the total amount of energy consumed
in performing computations in the conventional ADPLL and
the software based ADPLL of the invention is substantially
the same. The frequency content of this energy, however, is
significantly different. In case of the conventional ADPLL,
the computation energy is concentrated at the reference clock
edges and therefore has strong low frequency harmonic.
[0160] In case of the software basedADPLL, the compu­
tation energy is spread out between the reference clock edges
(which may or may not coincide with the processor clock
edges). The spreading out of the computation energy over the
reference clock period serves to create a much higher fre­
quency harmonic. When these harmonics mix with the car­
rier, they are offset in frequency around the carrier. The fil­
tering requirements to remove the undesired RF spurs close to
the carrier are excessive, as in the case of the conventional
ADPLL. The further away from the carrier the RF spurs are
located, the more relaxed the filtering requirements become.
Changing the frequency content of the computation energy to
(1) improve the RF spectrum characteristics or (2) consider
one or more protected frequency bands (e.g., RX band, GPS
band) is referred to as frequency planning. Such frequency
planning also helps to relax circuit design constraints, such as
power routing resistance and decoupling capacitance values,
which contribute to the magnitude of the energy surges at the
clock edges.
[0161] Further, the frequency planning can be modified by
varying the amount of oversampling (i.e. the ratio of proces-

US 2009/0262877 AI

sor clock frequency to the reference frequency FREF). The
frequency planning can be lowered as long as the minimum
required processing throughput in the processor is main­
tained. Otherwise, the required atomic operations of the
ADPLL may not be completed within a reference clock cycle.
[0162] It is appreciated that the application of the software
based mechanism described herein is not limited to an
ADPLL. The mechanism can be applied to any computing or
processing task that can benefit from reduced spur generation.
A flow diagram illustrating the RF spur reduction method of
the present invention is shown in FIG. 23. In the general case,
the task is first partitioned into a plurality of atomic operations
(step 400). The computation of the atomic operations
required to complete the task are spread out and/or reshuffled
over an entire reference clock period (step 402). The compu­
tation of each atomic operation occurs at the higher processor
clock rate, rather that the slower reference clock rate (step
404).

Software Dithering to Reduce Frequency Spurs

[0163] As described infra, the software AD PLL is operative
to push the frequency spurs from a low reference clock fre­
quency to a high processor clock frequency. The software
running in the processor, however, contains the low frequency
software loops, which still function to create low frequency
energy spikes. To illustrate this, an example is shown below.
The example software loop demonstrates how the loop size of
the script processor (i.e. the control processor within radio,
e.g., block 60 in FIG. 4) affects the spur pattern generated.
Assume the script processor runs the following simple loop
shown in Listing 2 below:

Listing 2: Example software loop

L1: R4 ~ [5, 10, 30] II [Fig. 24, Fig. 25, Fig. 26], respectively
while (R4 !~ 0) {

R4~R4-1

jump L1 I I operates in a continuous loop

[0164] A diagram illustrating a spurious frequency pattern
with 3.8 MHz gaps between spurs is shown in FIG. 24. In this
graph, the channel frequency is set to 1859 MHz and R4=5.
The graph shows a spurious pattern having frequency gaps of
approximately 3.8 MHz between spurs.
[0165] A diagram illustrating a spurious frequency pattern
with 2.0 MHz gaps between spurs is shown in FIG. 25. In this
graph, the channel frequency is set to 1859 MHz and R4=10.
The graph shows a spurious pattern having frequency gaps of
approximately 2.0 MHz between spurs.
[0166] A diagram illustrating a spurious frequency pattern
with 0.7 MHz gaps between spurs is shown in FIG. 26. In this
graph, the channel frequency is set to 1859 MHz and R4=30.
The graph shows a spurious pattern having frequency gaps of
approximately 0.7 MHz between spurs.
[0167] For a value of R4=15, the gap between frequency
spurs is approximately 1.4 MHz. It is noted that the frequency
gap between these related spurs is proportional to the loop
frequency (i.e. loop size), as shown in FIG. 27 wherein trace
410 represents the data calculated in accordance with the
expression y=23/(x+1) and trace 423 represents measured
data. As the loop size increases, i.e. loop frequency decreases,
the spur gaps decreases.
[0168] Thus, continuing to change the loop size causes the
energy of the loop frequency spurs to be spread out. The
following example is presented to illustrate this. A diagram

13
Oct. 22, 2009

illustrating a square wave with and without dithering is shown
in FIG. 28 wherein trace 414 represents a square wave with­
out dithering and trace 416 represents a square wave with
dithering. The first waveform 414 is a uniform square wave
having a period of 1 flS. The second waveform 416 is a square
wave having a varied period. The period of waveform 416
changes and repeats in accordance with the following pattern:
10/8 flS, 1 flS, 10/8 flS, 6/8 flS, 9/8 flS, 5/8 flS, 7/8 flS, 10/8 flS, 7/8
flS, 9/8 flS, 1 flS, 6/8 flS, 10/8 flS, 5/10 flS, 10/8 flS, 7/8 flS, 9/8 flS,
etc. It is important to note that the average period of waveform
416 with dithering is still 1 flS, the same as waveform 414
without dithering.

[0169] A diagram illustrating the power spectral density of
the square wave 414 (FIG. 28) without dithering is shown in
FIG. 29. Note that the spectrun1 contains spikes at the main
frequency (i.e. 1 MHz) and its harmonics. A diagram illus­
trating the power spectral density of the square wave 416
(FIG. 28) with dithering is shown in FIG. 30. It is important to
note that by simply dithering the period of the square wave,
the peak spurs power is reduced by more than 6 dB. The
power at those peak frequencies is spread out to other fre­
quencies since the total power must remain the same.

[0170] In accordance with the invention, the technique of
changing the loop size is applied to the data sample based
operation such as the software based DPLL. In the software
based DPLL, considering a reference clock of 26 MHz (i.e.
data samples arrive at the processor at a rate of26 MHz), then
the software loop also runs at 26 MHz. In general, however,
the processor will likely have some level of MIPS margin. In
this case, the processor finishes processing the current data
sample and waits for the next data sample to arrive. In par­
ticular, it waits at the end of the software loop for the next data
sample to arrive. Preferably, a mechanism to maintain the
correct average processing rate is used. Such a mechanism
could be implicitly realized or one or more extra steps are
included in the method.

[0171] Using the pseudo-code in Listing 1 presented supra
as an example, a wait instruction is inserted at the end of the
loop, as shown below in Listing 3.

Listing 3: Pseudo-code for ADPLL phase computation with
wait instruction

Ll: y16 ~ y15- S1
S1 ~y15
y1 ~FCW -y16
y2 ~y2 +y1
y3 ~ IIR (a1, y2, y3)

y4 ~ IIR (a2, y3, y4)
y5 ~ IIR (a3, y4, y5)
y6 ~ IIR (a4, y5, y6)
y7 ~ SHL (y6, alpha)
yll ~ IIR (gs, y7, yll)
y9 ~y6- PhE
y10~y10+y9

y12 ~ SHL (y10, rho)
y13 ~ yll + y12
y14 ~ y13 *gain
wait_ data
jump L1

I I S 1 is the store element
II delay

I I accumulation
I I 4th order infinite impulse response(IIR)
filter

II shift operation

II implies accumulation

I I wait for next data sample to arrive
I I operates in a continuous loop

[0172] If the system comprises a relatively small sized
buffer (i.e. FIFO) for the data samples, then the wait time can
be adjusted such that the software loop waits a different
number of cycles for different data samples.

US 2009/0262877 AI

Listing 4: Pseudo-code for ADPLL phase computation with
randomized wait time

Ll: y16 ~ y15- Sl
Sl ~ y15
yl ~FCW- y16
y2 ~ y2 + yl
y3 ~ IIR (al, y2, y3)

y4 ~ IIR (a2, y3, y4)
y5 ~ IIR (a3, y4, y5)
y6 ~ IIR (a4, y5, y6)
y7 ~ SHL (y6, alpha)
yll ~ IIR (gs, y7, yll)
y9 ~ y6- PhE
ylO~y10+y9

y12 ~ SHL (ylO, rho)
y13 ~ yll + y12
y14 ~ y13 *gain
waitrO

jumpLl

I I S 1 is the store element
II delay

I I accwnulation
I I 4th order infinite impulse response(IIR)
filter

I I shift operation

I I implies accwnulation

I I wait for rO cycles, rO changes each
iteration of
I I the loop in accordance with a
predetermined
I I pattern of randomized values
I I operates in a continuous loop

[0173] In the pseudo-code in Listing 4, register rO is set to
a random value at each iteration of the software loop, The
values for rO may be set in accordance with a predetermined
random value pattern, Each instruction in the software loop
will have a similar repeating pattern as that of waveform 416
(FIG, 28), Thus, the coupling energy of each instruction will
have the similar spreading effects as analyzed for the wave­
forms in FIG, 28,
[0174] A flow diagram illustrating a first software dithering
method of the present invention is shown in FIG, 32, First, the
task (e,g,, DPLL computation) is partitioned into a plurality
of atomic operations (step 420), A randomized wait instruc­
tion is inserted in the loop, typically, but not necessarily, at the
end of the software loop (step 422), The atomic operations of
the software loop are executed over a reference clock cycle
(step 424), The wait instruction causes the loop to pause a
randomized number of cycles (step 426), The wait period
each iteration may be set in accordance with a predetermined
wait pattern,
[0175] A generalized version of Listing 4 is shown in FIG,
31 wherein the duration of the software loop varies from
iteration to iteration in accordance with the predetermined
pattern of random numbers rO is set to,
[0176] To simplifY the analysis, consider the following
example pseudo-code shown below in Listing 5:

Listing 5: Example software loop

L1: Instruction!
Instruction2
Instruction3
Instruction4
InstructionS
Instruction6
Instruction?
InstructionS
wait 8 cycles
jump L1 I I operates in a continuous loop

[0177] We further assume that each instruction generates
the same current on the power supply, A diagram illustrating

14
Oct. 22, 2009

the instruction current waveform for a software loop having
eight instructions and eight wait cycles is shown in FIG, 33, A
diagram illustrating the power spectral density for fixed size
software loops (i,e, without dithering) is shown in FIG, 34,
The main spikes occur at the instruction clock frequency (i,e,
200 MHz) and its harmonics, All the other spurs occur at the
loop frequency (i,e, 12,5 MHz) and its harmonics,
[0178] In accordance with the present invention, the wait­
ing time for each loop is randomized (i,e, dithered), A dia­
gram illustrating the instruction current waveform for a soft­
ware loop with randomized wait time is shown in FIG, 35,
Note the randomized wait times between the clusters of
instructions, A diagram illustrating the corresponding power
spectral density for a software loop having a variable duration
(i,e, length) is shown in FIG, 36, The randomization of the
wait times cases a significant change in the corresponding
power spectral density, It is noted that the loop frequency
spurs are reduced due to the loop size varying from one
iteration of the software loop to the next,
[0179] In another embodiment, a plurality of waiting cycles
are further spread out within the software loop and blended in
with the instructions, Both the location of and the time dura­
tion of each wait cycle can be randomized, An example listing
of a variable duration software loop with multiple wait cycles
is shown in FIG, 37, This generalized listing shows four wait
cycles, i,e, wait rO, wait rl, wait r2 and wait r3, spread
throughout the software loop, The values of rO, rl, r2 and r3
may be set in accordance with a predetermined pattern of
random wait times, As in the previous embodiment compris­
ing a single wait cycle (e,g,, at the end of the software loop),
the total wait time of the plurality of wait cycles should not
exceed what it would have been with a single wait cycle,
Thus, the dithering of the length of the software loop is now
divided over a plurality of wait cycles instead of just one,
Wherein each wait cycle is programmed with a random pat­
tern of wait times such that the overall affect of dithering the
length of the software loop is still achieved,
[0180] A flow diagram illustrating a second software dith­
ering method of the present invention is shown in FIG, 38,
First, the task (e,g,, DPLL computation) is partitioned into a
plurality of atomic operations (step 430), A plurality of ran­
domized wait instructions are placed throughout the software
loop (step 432), Preferably, they are placed asymmetrically
throughout the loop, Random wait patterns are generated for
each of the wait instructions (step 434), The atomic opera­
tions of the software loop are executed over a reference clock
cycle (step 436), The execution of each wait instruction
causes the loop to pause a randomized number of cycles (step
438), The wait period at each wait cycle over each iteration
may be set in accordance with a predetermined wait pattern,
[0181] A diagram illustrating the instruction current wave­
form for a variable duration software loop with multiple wait
cycles is shown in FIG, 39, Compared to the graph ofFIG, 35,
the instruction current waveform in FIG, 39 are further spread
out and randomized in time, A diagram illustrating the power
spectral density for a software loop with multiple wait cycles
is shown in FIG, 40, In this graph, corresponding to the
instruction current waveform of FIG, 39, the frequency spurs
have become cleaner with regard to the main (i,e, major or
large) spikes of FIG, 36,
[0182] In yet another embodiment, one or more instruc­
tions within the software loop are shuffled in random fashion,
The shuffling may be performed randomly or pseudo-ran­
domly, Randomly shuffling the instructions changes the
repeating cycles of each instruction, which has the similar
effect as changing the loop size for those instructions, Note
that only instructions that are not data dependent are shuffled,
Instructions that depend on certain data must be executed in
their proper order, otherwise the D PLL computation (or other
task computation) will not be carried out properly, Example
pseudo-code for an DPLL phase computation with shuffled
instructions and randomized wait time is shown below in
Listing 6,

US 2009/0262877 AI Oct. 22, 2009
15

Listing 6: Pseudo-code for ADPLL phase computation with shuffled instructions and
randomized wait time

Ll: y16 ~y15- S1

S1 ~y15

y1 ~FCW -y16

y2 ~y2 +y1

I I S 1 is the store element

II delay

I I accumulation

y3 ~ IIR (a1, y2, y3)

y4 ~ IIR (a2, y3, y4)

y5 ~ IIR (a3, y4, y5)

y6 ~ IIR (a4, y5, y6)

II 4th order infinite impulse response(IIR) filter

y7 - SHL (y6, alpha)

yll ~ IIR (gs, y7, yll)

II 1 ,, non-data dependent instruction to be shuffled

II 2nd non-data dependent instruction to be shuffled

y9 ~y6- PhE

y10 ~y10 +y9

y12 ~ SHL (y10, rho)

y13 ~ yll + y12

y14 ~ y13 *gain

waitrO

II implies accwnulation

I I wait for rO cycles

//next iteration of the software loop

y16 ~y15- S1

S1 ~y15

y1 ~FCW -y16

y2 ~y2 +y1

I I S 1 is the store element

II delay

I I accumulation

y3 ~ IIR (a1, y2, y3)

y4 ~ IIR (a2, y3, y4)

II 4th order infinite impulse response(IIR) filter

y5 ~ IIR (a3, y4, y5)

y6 ~ IIR (a4, y5, y6)

y9 ~y6- PhE

y10 ~y10 +y9

y12 ~ SHL (y10, rho)

y7 ~ SHL (y6, alpha)

yll ~ IIR (gs, y7, yll)

y13 ~ yll + y12

y14 ~ y13 *gain

waitrO

II implies accwnulation

II 1 ,, shuffled instruction

II 2nd shuffled instruction

I I wait for rO cycles; rO changes each loop iteration

I I in accordance with a predetermined pattern

jumpLl I I operates in a continuous loop

[0183] Note that in this example, the atomic operations for
generating y7 and yll are not data-dependent and thus their
order in the pseudo-code can be changed from one iteration of
the software loop to another, In this example, the 'wait rO'
wait instruction is operative to wait one cycle (to simplify the
example), In this case, the two shuffled instructions have
varied repeating cycles of 19 and 14,
[0184] An example listing of a generalized software loop
with one or more shuffled instructions is shown in FIG, 4L In
this generalized loop, any number of non-data dependent
instructions may be randomly shuffled from iteration to itera-

tion, The wait instruction at the end of the loop may be left out
depending on the application, In addition, this instruction
shuffling embodiment may be used in combination with the
previous embodiment of placing a plurality of wait cycle
instructions throughout the software loop,
[0185] A flow diagram illustrating a second software dith­
ering method of the present invention is shown in FIG, 42,
First, the task (e,g,, DPLL computation) is partitioned into a
plurality of atomic operations (step 440), One or more non­
data dependent instructions are shuffled thereby changing the
repeating cycles of each instruction (step 442), A random wait

US 2009/0262877 AI

pattern is generated for the wait instruction (step 444). The
atomic operations of the software loop are executed over a
reference clock cycle (step 446). The execution of the wait
instruction causes the loop to pause a randomized number of
cycles (step 448). The wait period of the wait cycle over each
iteration may be set in accordance with a predetermined wait
pattern.
[0186] A diagram illustrating the current waveform with a
different power level for each instruction is shown in FIG. 43.
Note that this current waveform corresponds to a fixed soft­
ware loop instruction pattern.
[0187] A diagram illustrating the power spectral density for
a software loop with different instruction power is shown in
FIG. 44. The power spectral density shown corresponds to the
instruction current waveform of FIG. 43 representing a fixed
instruction pattern. To make the comparison fair, the average
power for each instruction remains the same.
[0188] A diagram illustrating the instruction current wave­
form for a software loop with one or more shuffled instruc­
tions is shown in FIG. 45.
[0189] Compared to the instruction power graphs of FIGS.
35, 39 and 43 the instruction current waveform of FIG. 45
exhibits a different power for each instruction. This is due to
the effect of shuffling the one or more instructions within the
software loop from iteration to iteration. The higher the num­
ber of unique shuffled instruction loops, the higher the ran­
domization in the instruction current waveform and resultant
power spectral density.
[0190] A diagram illustrating the power spectral density for
a software loop with one or more shuffled instructions is
shown in FIG. 46. This figure demonstrates that when shuf­
fling instructions within the loop, the power spectral density
changes. Compared to the power spectral density plots of
FIG. 44, the main spurs are not significantly different. The
spurs surrounding the main spurs, however, are reduced due
to the dithering achieved by the instruction shuffling. For
example, it can be seen that instruction shuffling achieves a
reduction in the spikes of the loop frequency spurs of appro xi­
mately 1.5 dB/Hz.
[0191] Thus, the present invention provides several mecha­
nisms for breaking the software loop pattern to improve the
frequency spur performance. These mechanisms include: (1)
waiting a random number of cycles at the end of the software,
(2) spreading (either randomly or otherwise) a plurality of
random wait cycles throughout the software loop thus blend­
ing with the loop instructions, and (3) shuffling one or more
instructions within the software loop. It is noted that these
mechanism may be implemented alone or in any combination
in accordance with the particular application and degree of
spur reduction desired.
[0192] It is important to note that these spurious reductions
mechanisms can be made adaptive using close loop control.
In this case, the processor monitors the spurious performance
by collecting real time or near real time internal DPLL data,
e.g., phase error, etc., and analyzes the data to determine the
performance. In response, one or more parameters and/or
methods are adjusted accordingly to improve the perfor­
mance until optimum performance is obtained.

Hardware Dithering to Reduce Frequency Spurs

[0193] In accordance with the invention, the software dith­
ering method described supra can be applied to a hardware
counterpart through the use of clock gating. A block diagram
illustrating hardware dithering through clock gating is shown
in FIG. 47. The system, generally referenced 450, comprises
reconfigurable calculation unit (RCU) 456, a control state
machine 454 and clock gating circuit 452.

16
Oct. 22, 2009

[0194] In this embodiment, the data processing algorithm
for the software based DPLL is implemented using hardware
that is controlled by the state machine. The control state
machine 454 configures the reconfigurable computation unit
(RCU) 456 to apply different processing to a particular data
sample received on the DATA IN line to generate output data
on the DATA OUT line. The state machine waits if it is able to
complete the processing required for a data sample before the
next data sample arrives. Random waiting cycles can be
inserted either through clock gating (driven off the primary
clock input) or through the control state machine 454. In this
fashion, the three dithering based mechanisms described
supra, i.e. (1) waiting a random number of cycles at the end of
the software, (2) spreading (either randomly or otherwise) a
plurality of random wait cycles throughout the software loop
thus blending with the loop instructions, and (3) shuffling one
or more instructions within the software loop, are imple­
mented. The first two mechanisms may be implemented
either by clock gating or via the control state machine. The
third mechanism (i.e. shuffling), is implemented via the con­
trol state machine.
[0195] The terminology used herein is for the purpose of
describing particular embodiments only and is not intended to
be limiting of the invention. As used herein, the singular
forms "a", "an" and "the" are intended to include the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms "comprises" and/
or "comprising," when used in this specification, specify the
presence of stated features, integers, steps, operations, ele­
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.
[0196] The corresponding structures, materials, acts, and
equivalents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus­
tive or limited to the invention in the form disclosed. As
numerous modifications and changes will readily occur to
those skilled in the art, it is intended that the invention not be
limited to the limited number of embodiments described
herein. Accordingly, it will be appreciated that all suitable
variations, modifications and equivalents may be resorted to,
falling within the spirit and scope of the present invention.
The embodiments were chosen and described in order to best
explain the principles of the invention and the practical appli­
cation, and to enable others of ordinary skill in the art to
understand the invention for various embodiments with vari­
ous modifications as are suited to the particular use contem­
plated.

What is claimed is:
1. A method of reducing the generation of frequency spurs

in the performance of a processing task normally performed
within a reference clock period, said method comprising the
steps of:

dividing said task into a plurality of atomic operation com­
putations for execution in a software loop;

randomizing the execution of one or more atomic opera­
tions in each iteration of said software loop; and

wherein said atomic operations are clocked using a proces­
sor clock having a frequency significantly higher than
that of said reference clock.

US 2009/0262877 AI

2. The method according to claim 1, wherein said compu­
tations of atomic operations are spread out in time throughout
said reference clock period to reduce the effects of said fre­
quency spurs.

3. The method according to claim 1, wherein said process­
ing task comprises a digital phase locked loop.

4. The method according to claim 1, wherein said step of
randomizing comprises the step of dithering the duration of
each iteration of said software loop.

5. The method according to claim 1, wherein said step of
randomizing comprises the step of inserting a plurality of
random wait cycles throughout said software loop.

6. The method according to claim 1, wherein said step of
randomizing comprises the step of shuffling the order of
execution of one or more instructions within said software
loop.

7. The method according to claim 1, further comprising the
step of applying closed loop control whereby said step of
randomizing is adjusted in accordance with one or more
performance data collected from the execution of said pro­
cessing task.

8. A method of reducing the generation of frequency spurs
in a software based digital phase locked loop normally per­
formed within a reference clock period, said method com­
prising the steps of:

dividing computation of said phase locked loop operation
into a plurality of atomic operation computations for
execution in a software loop;

dithering the duration of each iteration of said software
loop; and

wherein said atomic operations are clocked using a proces­
sor clock having a frequency significantly higher than
that of said reference clock.

9. The method according to claim 8, wherein the average
period of execution of said software loop equal to said refer­
ence clock period.

10. The method according to claim 8, said step of dithering
changes the spectrum of spurs generated by said atomic com­
putations.

11. The method according to claim 8, wherein said step of
dithering comprises the step of inserting a random wait period
at the end of said software loop.

12. The method according to claim 11, wherein the dura­
tion of the random wait period in each iteration of said soft­
ware loop is set in accordance with a predetermined wait
pattern.

13. The method according to claim 8, wherein all compu­
tations required to perform said phase locked loop operation
are completed within said reference clock period.

14. The method according to claim 8, wherein dithering the
duration of each iteration of said software loop significantly
reduces effects of current transients.

15. The method according to claim 8, further comprising
the step of applying closed loop control to said method
whereby said step of dithering is adjusted in accordance with
one or more performance data collected from the execution of
said digital phase locked loop.

16. A method of reducing the generation of frequency spurs
in a software based digital phase locked loop normally per­
formed within a reference clock period, said method com­
prising the steps of:

dividing computation of said phase locked loop operation
into a plurality of atomic operation computations for
execution in a software loop;

17
Oct. 22, 2009

dithering the duration of each iteration of said software
loop by inserting a plurality of random wait periods
throughout said software loop; and

wherein said atomic operations are clocked using a proces­
sor clock having a frequency significantly higher than
that of said reference clock.

17. The method according to claim 16, wherein the average
period of execution of said software loop is equal to said
reference clock period.

18. The method according to claim 16, said step of dither­
ing changes the spectrum of spurs generated by said atomic
computations.

19. The method according to claim 16, wherein the dura­
tion of each random wait period is set in accordance with a
predetermined respective wait pattern.

20. The method according to claim 16, wherein all com­
putations required to perform said phase locked loop opera­
tion are completed within said reference clock period.

21. The method according to claim 16, wherein dithering
the duration of each iteration of said software loop signifi­
cantly reduces the loop frequency spurs.

22. The method according to claim 16, further comprising
the step of applying closed loop control to said method
whereby said step of dithering is adjusted in accordance with
one or more performance data collected from the execution of
said digital phase locked loop.

23. A method of reducing the generation of frequency spurs
in a software based digital phase locked loop normally per­
formed within a reference clock period, said method com­
prising the steps of:

dividing computation of said phase locked loop operation
into a plurality of atomic operation computations for
execution in a software loop;

randomly shuffling the order of execution of one or more
atomic operations in each iteration of said software loop;
and

wherein said atomic operations are clocked using a proces­
sor clock having a frequency significantly higher than
that of said reference clock.

24. The method according to claim 23, wherein said one or
more shuffled atomic operations comprise non-data depen­
dent atomic operations.

25. The method according to claim 23, further comprising
the step of concatenating a plurality of reshuffled software
loops to generate a modified software loop, wherein the
atomic operation order of execution in each reshuffled soft­
ware loop is unique.

26. The method according to claim 25, wherein higher
numbers of concatenated software loops yields higher reduc­
tions in loop frequency spurs.

27. The method according to claim 23, wherein all com­
putations required to perform said phase locked loop opera­
tion are completed within said reference clock period.

28. The method according to claim 23, wherein dithering
the duration of each iteration of said software loop signifi­
cantly reduces loop frequency spurs.

29. The method according to claim 23, further comprising
the step of applying closed loop control whereby said step of
randomly shuffling is adjusted in accordance with one or
more performance data collected from the execution of said
digital phase locked loop.

30. A phase locked loop (PLL) having a reference clock,
said PLL comprising:

US 2009/0262877 AI

means for partitioning computation of said phase locked
loop into a plurality of atomic operation computations
for execution in a software loop;

means for randomizing the execution of one or more
atomic operations in each iteration of said software loop;

a processor clock having a frequency significantly higher
than that of said reference clock;

an oscillator operative to generate a radio frequency (RF)
signal having a frequency determined in accordance
with a tuning command input thereto; and

a processor operative to generate said tuning command,
said processor clocked at said processor clock rate, said
processor comprising a calculation unit operative to
execute instructions, wherein each instruction is opera­
tive to perform one of said atomic operation computa­
tions.

31. The phase locked loop according to claim 30, wherein
said means for randomizing comprises the step of dithering
the duration of each iteration of said software loop.

18
Oct. 22, 2009

32. The phase locked loop according to claim 30, wherein
said means for randomizing comprises the step of inserting a
plurality of random wait cycles throughout said software
loop.

33. The phase locked loop according to claim 30, wherein
said means for randomizing comprises the step of shuffling
the order of execution of one or more instructions within said
software loop.

34. The phase locked loop according to claim 30, further
comprising a time to digital converter (TDC) for measuring a
phase error between said reference clock and said RF signal.

35. The phase locked loop according to claim 30, further
comprising a clock divider coupled to said oscillator for gen­
eration of said processor clock.

36. The method according to claim 30, further comprising
a closed loop control unit whereby said means for randomiz­
ing is adjusted in accordance with one or more performance
data collected from the execution of said phase locked loop.

* * * * *

