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COMPUTATION SPREADING UTILIZING 
DITHERING FOR SPUR REDUCTION IN A 

DIGITAL PHASE LOCK LOOP 

REFERENCE TO RELATED APPLICATIONS 

[0001] This application is related to U.S. Ser. No. 11/853, 
575, filed Sep. 11, 2007, entitled "Software reconfigurable 
digital phase lock loop architecture", U.S. Ser. No. 11/853, 
588, filed Sep. 11, 2007, entitled "Computation spreading for 
spur reduction in a digital phase lock loop", U.S. Ser. No. 
11/949,310, filed Dec. 3, 2007, entitled "Computation paral­
lelization in software reconfigurable all digital phase lock 
loop", all of which are incorporated herein by reference in 
their entirety. 

FIELD OF THE INVENTION 

[0002] The present invention relates to the field of data 
communications and more particularly relates to an apparatus 
for and method of computation spreading using dithering to 
significantly reduce the generation of frequency spurs in a 
digital phase locked loop (DPLL) architecture. 

BACKGROUND OF THE INVENTION 

[0003] Phase locked loop (PLL) circuits are well known in 
the art. A block diagram illustrating an example prior art 
phase locked look (PLL) circuit is shown in FIG. 1. The 
typical PLL circuit, generally referenced 170, comprises 
phase detector 172, loop filter or low pass filter (LPF) 174 and 
voltage controlled oscillator (VCO) 176. 
[0004] In operation, a frequency reference clock signal, 
often derived from a crystal oscillator, is input to the phase 
detector along with the VCO output signal (often divided 
down). The phase detector, typically implemented as a charge 
pump or mixer, generates a phase error (PHE) proportional to 
the phase difference between the reference clock input signal 
and the VCO output clock signal. The resultant PHE signal is 
then low pass filtered to yield a slow varying frequency com­
mand signal that controls the frequency of the VCO. The 
frequency command signal is input to a VCO or digitally 
controlled oscillator (DCO) such that the VCO output fre­
quency/phase is locked to the reference clock with a certain 
fixed relationship. This oscillator generates an RF signal 
whose frequency depends on the frequency command signal. 
[0005] In wireless communication systems, e.g., GSM, 
UMTS, Bluetooth, WiFi, etc., the RF synthesizer is a funda­
mental block that is used to provide a high quality, high 
frequency RF carrier for the transmitter and a local oscillator 
clock for the receiver, whose output frequency can range from 
several hundreds ofMHz to several GHz. Different applica­
tions with different standards require different RF frequen­
cies with different RF performance requirements. The RF 
clock generating the RF carrier plays a critical role in the 
entire wireless communication system. The quality of the RF 
clock directly affects the communication performance and 
often is the determining factor whether the system meets 
standards specifications. 
[0006] Typically, the RF synthesizer is implemented using 
a phase locked loop (PLL) typically using a pure hardwired 
(i.e. largely fixed hardware with limited reconfigurability) 
design approach. All digital phase locked loops (ADPLLs) 
for RF synthesizer construction targeting wireless communi­
cations are known in the art. Conventional ADPLL circuits, 
however, are implemented as fixed hardware based (or hard-
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wired) with limited reconfigurability. It is thus difficult for 
one design to readily support multi-standard wireless appli­
cations, e.g., GSM, GPRS, EDGE, WCDMA, etc. as well as 
wireless data networks, such as Bluetooth, WiFi and 
WiMAX. 
[0007] Once a hardwired circuit design is committed to a 
physical implementation, there is little that can be changed 
regarding the transfer function or operation of the ADPLL. 
Any modification requiring logic and interconnect change 
results in numerous time consuming steps within the ASIC 
creation process (i.e. timing closure, physical design, etc.) 
typically requiring significant engineering resources and 
months of delay to launch a product. In addition, once the 
silicon is manufactured, any change to the ADPLL architec­
ture makes an even costlier impact, making such changes 
virtually impractical. 
[0008] In general, a main difference between a hardwired 
implementation and a microprocessor based implementation 
is that the microprocessor implementation uses shared hard­
ware running at higher speed, while the hardwired implemen­
tation uses dedicated hardware running at lower speed. A 
block diagram illustrating an example prior art generalized 
processing block using a dedicated hardware implementation 
is shown in FIG. 2. The hardwired implementation, generally 
referenced 10, comprises a plurality of dedicated hardware 
blocks 12 for each function 14. The circuit provides memory 
(Mem1, Mem2, Mem3, Mem4) and dedicated hardware for 
each function (F1, F2, F3, F4), wherein each block runs at the 
data path speed fs. 
[0009] A block diagram illustrating an example prior art 
generalized processing block using a processor based imple­
mentation is shown in FIG. 3. The circuit, generally refer­
enced 16, comprises instruction memory 18, instruction fetch 
20, instruction decode 22, ALU 24, data bus 29, register file 
26 and data memory 28. The processor based solution has one 
shared hardware blockALU that can be configured to execute 
any of the four functions (F1, F2, F3, F4). The ALU is pro­
grammed by the instructions stored in instruction memory 18 
and the ALU is adapted to run four times faster ( 40 to 
complete the data processing within the data path speed of fs. 
[0010] With CMOS process technology currently advanc­
ing from 65 nm to 45 nm to 32 nm, transistors are becoming 
faster and faster. The interconnections, however, are becom­
ing more and more dominant in SOC design regarding the 
delay and area contribution. The interconnections in a hard­
wired design having a large area will significantly slow the 
circuit speed while adding a significant silicon area overhead. 
Since processor based solutions run at higher speed with 
shared hardware, resulting in smaller area, advancements in 
semiconductor technology will make processor based solu­
tions more and more attractive. This further favors use of 
multiple but smaller processors with a dedicated instruction 
set rather than one processor with a more general instruction 
set. 
[0011] Furthermore, in conventional ADPLL circuits, the 
digital part of local oscillator (DLO) (i.e. a portion of the 
ADPLL) is implemented using dedicated random logic gates. 
Thus, all computations are launched on the rising edge of the 
ADPLL system reference clock and latched on the next rising 
edge. Since a majority of the circuit switching activity is 
centered on the rising edge of the system reference clock, 
most of the digital current is being switched at that point as 
well, creating large current transients. These digital current 
surges find their way into on-chip DCO, LNA, mixer and PA 
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circuit nodes via various coupling mechanisms, e.g., capaci­
tive, etc. These disturbances at the system clock rate have 
strong harmonics that are upconverted into sensitive areas of 
the RF spectrum, resulting in unacceptable RF spurious 
tones. 
[0012] It is thus desirable to have a processor based PLL 
architecture that is software based and programmable. The 
programmable PLL should provide a reconfiguration capa­
bility which eases silicon debugging and development tasks 
and provides multi-standard operation capability. Further, the 
software based PLL architecture should create significantly 
lower current transients thus reducing the generation of spurs 
in the output spectrum. At the same time, the unavoidable 
spurious energy that is generated by the logic activity and 
coupled into RF circuits should be pushed higher in frequency 
where they lie outside of or can be easily filtered out of critical 
frequency bands. 

SUMMARY OF THE INVENTION 

[0013] The present invention is a novel and useful appara­
tus for and method of spur reduction using computation 
spreading and dithering in a digital phase locked loop (DPLL) 
architecture. The invention is particularly suitable for use 
with a software based phase locked loop (PLL). The proces­
sor-based PLL (i.e. all digital phase-locked loop or ADPLL) 
architecture described herein can be used for RF frequency 
synthesis in radio transceivers and other applications. 
[0014] The software based phase locked loop incorporates 
a reconfigurable calculation unit (RCU) that can be pro­
grammed to sequentially perform all the atomic operations of 
a phase locked loop or any other desired task. The RCU is a 
key component in a so called application specific instruction­
set processor (ASIP). The ASIP includes an instruction set 
that comprises instructions optimized to perform the indi­
vidual atomic operations of a phase locked loop. 
[0015] The reconfigurable computational unit (RCU) is 
time shared for all computations within the phase locked 
loop. The reconfigurable computational unit and related con­
figuration control logic replaces the dedicated and distributed 
random logic inside the conventional digital PLL. The recon­
figurable computational unit is controlled via microcode 
stored in on-chip memory (e.g., RAM or ROM). Since the 
computational unit is time shared among all operations, it is 
operated at an oversampled rate that is high enough to insure 
the proper implementation of the phase locked loop. In order 
to achieve this, the reconfigurable computational unit is opti­
mized to perform all computations of the phase locked loop 
atomic operations within a single reference clock cycle. 
[0016] In one embodiment, the instruction set is imple­
mented in microcode that is stored in volatile or non-volatile 
memory. Thus, the ASIP can easily be reconfigured to imple­
ment customized designs for different applications, such as 
multiple cellular standards, including GSM, GPRS, EDGE, 
WCDMA, Bluetooth, WiFi, etc., as well as wireless data 
network standards, including Bluetooth, WiFi, WiMAX, etc. 
The ASIP can be configured on the fly to handle the different 
RF frequency and performance requirements of each com­
munication standard. The software based PLL of the present 
invention provides the flexibility for a more unified design 
that fits different applications. 
[0017] In another embodiment, the phase locked loop task 
is partitioned into a plurality of atomic operations. The ASIP 
is adapted to spread the computation of the atomic operations 
out over and completed within an entire PLL reference clock 
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period. Each computation being performed at a much higher 
processor clock frequency than the PLL reference clock rate. 
This functions to significantly reduce the per cycle current 
transient generated by the computations. Further, the fre­
quency content of the current transients is at the higher pro­
cessor clock frequency. This results in a significant reduction 
in spurs within sensitive portions of the output spectrum. 
[0018] In addition, dithering is introduced to further reduce 
frequency spurs in the band of interest. In one embodiment, 
the duration of the software loop is dithered around the nomi­
nal clock period by adding a single wait cycle to the software 
loop. In another embodiment, the spurs are further reduced by 
spreading a plurality of wait cycles throughout the software 
loop. In yet another embodiment, the spurs are reduced by 
shuffling (randomly or pseudo-randomly) one or more non­
data dependent instructions in each iteration of the software 
loop. 
[0019] An example application is provided of the software 
based phase locked loop incorporated in a single chip radio, 
e.g., Bluetooth, GSM, etc., that integrates the RF circuitry 
with the digital base band (DBB) circuitry on the same die. 
[0020] Advantages of the software reconfigurable phase 
locked loop of the present invention include the following. 
Firstly, the invention enables all phase domain calculations to 
be performed within one reference clock cycle due to the use 
of the reconfigurable calculation unit optimized for perform­
ing PLL calculations serially at high frequency. Secondly, 
defining the ASIP instruction set in microcode stored in vola­
tile or non-volatile memory makes it inherently software 
reconfigurable, permitting the microcode to be replaced with­
out changing any lithography masks. The enables easier sili­
con debugging and multi-standard radio support. 
[0021] Thirdly, the invention permits a significant reduc­
tion in silicon area. The invention trades the rate of operation 
for the amount of active implementation area required by the 
process of oversampling and function sharing. For an X factor 
increase in operational frequency, there is a complimentary X 
factor decrease in the required computational combinatorial 
logic area. An additional area is needed due to the overhead of 
computational unit multiplexing. While the storage area is 
constant, the net result is a significant reduction in overall 
implementation area required. 
[0022] Fourthly, the invention enables a significant reduc­
tion ofRF spurs in the sensitive frequency bands of a radio by 
changing the frequency of the switching logic gates. Prior art 
solutions perform PLL computations at relatively low rates, 
e.g., FREF of26-38.8 MHz. The resulting switching current 
transients are mixed with the carrier and appear as frequency 
spurs at sensitive radio frequency bands. Considering GSM, 
for example, the most sensitive RX band is approximately 20 
to 80 MHz away from the carrier. The invention performs the 
bulk of computations at oversampled rates, resulting in spurs 
outside sensitive regions. The amount of oversampling can be 
controlled (e.g., increased or decreased) to provide any 
desired frequency planning by changing the frequency of the 
processing clock. Fifthly, reduction in silicon area provided 
by the invention enables power routing and decoupling 
capacitance requirements to be relaxed. 
[0023] Note that some aspects of the invention described 
herein may be constructed as software objects that are 
executed in embedded devices as firmware, software objects 
that are executed as part of a software application on either an 
embedded or non-embedded computer system such as a digi­
tal signal processor (DSP), microcomputer, minicomputer, 
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microprocessor, etc. running a real-time operating system 
such as WinCE, Symbian, OSE, Embedded LINUX, etc. or 
non-real time operating system such as Windows, UNIX, 
LINUX, etc., or as soft core realized HDL circuits embodied 
in anApplication. Specific Integrated Circuit (ASIC) or Field 
Programmable Gate Array (FPGA), or as functionally 
equivalent discrete hardware components. 

[0024] There is this provided in accordance with the inven­
tion, a method of reducing the generation of frequency spurs 
in the performance of a processing task normally performed 
within a reference clock period, the method comprising the 
steps of dividing the task into a plurality of atomic operation 
computations for execution in a software loop, randomizing 
the execution of one or more atomic operations in each itera­
tion of the software loop and wherein the atomic operations 
are clocked using a processor clock having a frequency sig­
nificantly higher than that of the reference clock. 

[0025] There is also provided in accordance with the inven­
tion, a method of reducing the generation of frequency spurs 
in a software based digital phase locked loop normally per­
formed within a reference clock period, the method compris­
ing the steps of dividing computation of the phase locked loop 
operation into a plurality of atomic operation computations 
for execution in a software loop, dithering the duration of 
each iteration of the software loop and wherein the atomic 
operations are clocked using a processor clock having a fre­
quency significantly higher than that of the reference clock. 

[0026] There is further provided in accordance with the 
invention, a method of reducing the generation of frequency 
spurs in a software based digital phase locked loop normally 
performed within a reference clock period, the method com­
prising the steps of dividing computation of the phase locked 
loop operation into a plurality of atomic operation computa­
tions for execution in a software loop, dithering the duration 
of each iteration of the software loop by inserting a plurality 
of random wait periods throughout the software loop and 
wherein the atomic operations are clocked using a processor 
clock having a frequency significantly higher than that of the 
reference clock. 

[0027] There is also provided in accordance with the inven­
tion, a method of reducing the generation of frequency spurs 
in a software based digital phase locked loop normally per­
formed within a reference clock period, the method compris­
ing the steps of dividing computation of the phase locked loop 
operation into a plurality of atomic operation computations 
for execution in a software loop, randomly shuffling the order 
of execution of one or more atomic operations in each itera­
tion of the software loop and wherein the atomic operations 
are clocked using a processor clock having a frequency sig­
nificantly higher than that of the reference clock. 

[0028] There is further provided in accordance with the 
invention, a phase locked loop (PLL) having a reference 
clock, the PLL comprising means for partitioning computa­
tion of the phase locked loop into a plurality of atomic opera­
tion computations for execution in a software loop, means for 
randomizing the execution of one or more atomic operations 
in each iteration of the software loop, a processor clock hav­
ing a frequency significantly higher than that of the reference 
clock, an oscillator operative to generate a radio frequency 
(RF) signal having a frequency determined in accordance 
with a tuning command input thereto and a processor opera­
tive to generate the tuning command, the processor clocked at 
the processor clock rate, the processor comprising a calcula-
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tion unit operative to execute instructions, wherein each 
instruction is operative to perform one of the atomic operation 
computations. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0029] The invention is herein described, by way of 
example only, with reference to the accompanying drawings, 
wherein: 
[0030] FIG. 1 is a block diagram illustrating a simplified 
block diagram of an example prior art phase locked look 
(PLL) circuit; 
[0031] FIG. 2 is a block diagram illustrating an example 
prior art generalized processing block using a dedicated hard­
ware implementation; 
[0032] FIG. 3 is a block diagram illustrating an example 
prior art generalized processing block using a processor 
based implementation; 
[0033] FIG. 4 is a block diagram illustrating a single chip 
polar transmitter based radio incorporating a software based 
DPLL using dithering mechanism of the present invention; 
[0034] FIG. 5 is a simplified block diagram illustrating an 
example mobile communication device incorporating the 
software based DPLL using dithering mechanism of the 
present invention; 
[0035] FIG. 6 is a block diagram illustrating functions of an 
exampleADPLL-based polar transmitter suitable for use with 
the present invention; 
[0036] FIG. 7 is a simplified block diagram illustrating an 
embodiment of the software based ADPLL incorporating a 
processor based phase domain calculator; 
[0037] FIG. 8 is a block diagram illustrating an example 
embodiment of the phase domain calculator of the present 
invention in more detail; 
[0038] FIG. 9 is a timing diagram illustrating the process­
ing clock and reference frequency timing; 
[0039] FIG. 10 is a block diagram illustrating an instruction 
view of the software basedADPLL architecture of the present 
invention; 
[0040] FIG. 11 is a block diagram illustrating an example 
processor based software ADPLL architecture of the present 
invention; 
[0041] FIG. 12A is a diagram illustrating the output and 
transfer function equations for the infinite impulse response 
(IIR) filter portion of the ADPLL; 
[0042] FIG. 12B is an equivalent block diagram imple­
menting the output equation shown in FIG. 12A; 
[0043] FIG. 12C is an equivalent block diagram imple­
menting the output equation shown in FIG. 12A whereby the 
multiplication operations have been replaced with shift 
operations; 
[0044] FIG. 12D is a diagram illustrating the resultant 
reconfigurable calculation unit (RCU) implementing the out­
put equation shown in FIG. 12A; 
[0045] FIG. 13 is a block diagram illustrating an example 
RCU unit for implementing the ADPLL circuit; 
[0046] FIG. 14 is a block diagram illustrating the RCU unit 
for implementing the F _Diff( ) instruction; 
[0047] FIG. 15 is a block diagram illustrating the RCU unit 
for implementing the F _PheAcc( ) instruction; 
[0048] FIG. 16 is a block diagram illustrating the RCU unit 
for implementing the F _IIR( ) instruction; 
[0049] FIG. 17 is a block diagram illustrating the RCU unit 
for implementing the F _SHR( ) instruction; 
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[0050] FIG. 18 is a block diagram illustrating the RCU unit 
for implementing the F _IntAcc( ) instruction; 
[0051] FIG. 19 is a block diagram illustrating the RCU unit 
for implementing the F _SHRAdd( ) instruction; 
[0052] FIG. 20 is a timing diagram illustrating several 
ADPLL processing clock options and the current spikes 
resulting therefrom; 
[0053] FIG. 21 is a timing diagram illustrating an example 
RF spectrum generated by a legacy ADPLL; 
[0054] FIG. 22 is a timing diagram illustrating an example 
RF spectrum generated by the software basedADPLL of the 
present invention; 
[0055] FIG. 23 is a flow diagram illustrating the RF spur 
reduction method of the present invention; 
[0056] FIG. 24 is a diagram illustrating a spurious fre­
quency pattern with 3.8 MHz gaps between spurs; 
[0057] FIG. 25 is a diagram illustrating a spurious fre­
quency pattern with 2.0 MHz gaps between spurs; 
[0058] FIG. 26 is a diagram illustrating a spurious fre­
quency pattern with 0.7 MHz gaps between spurs; 
[0059] FIG. 27 is a diagram illustrating the relationship 
between loop size and spur gap; 
[0060] FIG. 28 is a diagram illustrating a square wave with 
and without dithering; 
[0061] FIG. 29 is a diagram illustrating the power spectral 
density of the square wave without dithering; 
[0062] FIG. 30 is a diagram illustrating the power spectral 
density of the square wave with dithering; 
[0063] FIG. 31 is an example listing of a variable duration 
software loop with a single wait cycle; 
[0064] FIG. 32 is a flow diagram illustrating a first software 
dithering method of the present invention; 
[0065] FIG. 33 is a diagram illustrating the instruction cur­
rent waveform for a software loop having eight instructions 
and eight wait cycles; 
[0066] FIG. 34 is a diagram illustrating the power spectral 
density for fixed size software loops; 
[0067] FIG. 35 is a diagram illustrating the instruction cur­
rent waveform for a software loop with varying wait time; 
[0068] FIG. 36 is a diagram illustrating the power spectral 
density for a software loop having a variable size; 
[0069] FIG. 37 is an example listing of a variable duration 
software loop with multiple wait cycles; 
[0070] FIG. 38 is a flow diagram illustrating a second soft­
ware dithering method of the present invention; 
[0071] FIG. 39 is a diagram illustrating the instruction cur­
rent waveform for a variable duration software loop with 
multiple wait cycles; 
[0072] FIG. 40 is a diagram illustrating the power spectral 
density for a software loop with multiple wait cycles; 
[0073] FIG. 41 is an example listing of a software loop with 
one or more shuffled instructions; 
[0074] FIG. 42 is a flow diagram illustrating a second soft­
ware dithering method of the present invention; 
[0075] FIG. 43 is a diagram illustrating the current wave­
form with a different power level for each instruction; 
[0076] FIG. 44 is a diagram illustrating the power spectral 
density for a software loop with different instruction power; 
[0077] FIG. 45 is a diagram illustrating the instruction cur­
rent waveform for a software loop with one or more shuffled 
instructions; 
[0078] FIG. 46 is a diagram illustrating the power spectral 
density for a software loop with one or more shuffled instruc­
tions; and 
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[0079] FIG. 47 is a block diagram illustrating hardware 
dithering through clock gating. 

DETAILED DESCRIPTION OF THE INVENTION 

Notation Used Throughout 

[0080] The following notation is used throughout this 
document. 

Terrn 

AC 
ACL 
ACW 
ADC 
ADPLL 
ALU 
AM 
ASIC 
ASIP 
AVI 
AWS 
BIST 
BMP 
BPF 
CMOS 
CPU 
cu 
cw 
DAC 
dB 
DBB 
DC 
DCO 
DCXO 
DPA 
DPLL 
DRAC 
DRP 
DSL 
DSP 
EDGE 
EDR 
EEPROM 
EPROM 
eSCO 
FCC 
FCW 
FIB 
FM 
FPGA 
FSM 
GMSK 
GPRS 
GPS 
GSM 
HB 
HDL 
HFP 
I/F 
IC 
IEEE 
IIR 
JPG 
LAN 
LB 
LDO 
LNA 
LO 
LPF 
MAC 
MAP 
MBOA 
MIM 
Mod 

Definition 

Alternating Current 
Asynchronous Connectionless Link 
Amplitnde Control Word 
Analog to Digital Converter 
All Digital Phase Locked Loop 
Arithmetic Logic Unit 
Amplitnde Modulation 
Application Specific Integrated Circuit 
Application Specific Instruction-set Processor 
Audio Video Interface 
Advanced Wireless Services 
Built-In Self Test 
Windows Bitruap 
Band Pass Filter 
Complementary Metal Oxide Semiconductor 
Central Processing Unit 
Control Unit 
Continuous Wave 
Digital to Analog Converter 
Decibel 
Digital Baseband 
Direct Current 
Digitally Controlled Oscillator 
Digitally Controlled Crystal Oscillator 
Digitally Controlled Power Amplifier 
Digital Phase Locked Loop 
Digital to RF Amplitnde Conversion 
Digital RF Processor or Digital Radio Processor 
Digital Subscriber Line 
Digital Signal Processor 
Enhanced Data Rates for GSM Evolution 
Enhanced Data Rate 
Electrically Erasable Programmable Read Only Memory 
Erasable Progranunable Read Only Memory 
Extended Synchronous Connection-Oriented 
Federal Communications Commission 
Frequency Command Word 
Focused Ion Beam 
Frequency Modulation 
Field Programmable Gate Array 
Finite State Machine 
Gaussian Minimum Shift Keying 
General Packet Radio Service 
Global Positioning System 
Global System for Mobile communications 
High Band 
Hardware Description Language 
Hands Free Protocol 
Interface 
Integrated Circuit 
Institnte of Electrical and Electronics Engineers 
Infinite Impulse Response 
Joint Photographic Experts Group 
Local Area Network 
Low Band 
Low Drop Out 
Low Noise Amplifier 
Local Oscillator 
Low Pass Filter 
Media Access Control 
Media Access Protocol 
Multiband OFDM Alliance 
Metal Insulator Metal 
Modulo 
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Terrn 

MOS 
MP3 
MPG 
MUX 
NZIF 
OFDM 
PA 
PAN 
PC 
PC! 
PD 
PDA 
PE 
PHE 
PLL 
PM 
PPA 
QoS 
RAM 
RCU 
RF 
RFBIST 
RMS 
ROM 
SAM 
SAW 
sco 
SEM 
SIM 
SoC 
SRAM 
SYNTH 
TDC 
TDD 
TV 
UART 
UGS 
UMTS 
USB 
UWB 
vco 
WCDMA 
WiFi 
WiMAX 
WiMedia 
WLAN 
WMA 
WMAN 
WMV 
WPAN 
XOR 
ZIF 

-continued 

Definition 

Metal Oxide Semiconductor 
MPEG-1 Audio Layer 3 
Moving Picture Experts Group 
Multiplexer 
Near Zero IF 
Orthogonal Frequency Division Multiplexing 
Power Amplifier 
Personal Area Network 
Personal Computer 
Personal Computer Interconnect 
Phase Detector 
Personal Digital Assistant 
Phase Error 
Phase Error 
Phase Locked Loop 
Phase Modulation 
Pre-Power Amplifier 
Quality of Service 
Random Access Memory 
Reconfigurable Calculation Unit 
Radio Frequency 
RF Built-In Self Test 
Root Mean Squared 
Read Only Memory 
Sigma-Delta Amplitude Modulation 
Surface Acoustic Wave 
Synchronous Connection-Oriented 
Spectral Emission Mask 
Subscriber Identity Module 
System on Chip 
Static Read Only Memory 
Synthesizer 
Time to Digital Converter 
Time Division Duplex 
Television 
Universal Asynchronous Transmitter/Receiver 
Unsolicited Grant Services 
Universal Mobile Telecommunications System 
Universal Serial Bus 
Ultra Wideband 
Voltage Controlled Oscillator 
Wideband Code Division Multiple Access 
Wireless Fidelity 
Worldwide Interoperability for Microwave Access 
Radio platform for UWB 
Wireless Local Area Network 
Windows Media Audio 
Wireless Metropolitan Area Network 
Windows Media Video 
Wireless Personal Area Network 
Exclusive Or 
Zero IF 

Detailed Description of the Invention 

[0081] The present invention is a novel and useful appara­
tus for and method of RF spur reduction using computation 
spreading and dithering in a digital phase locked loop (DPLL) 
architecture. The invention is particularly suitable for use 
with a software based phase locked loop (PLL). The proces­
sor-based PLL (i.e. all digital phase-locked loop or ADPLL) 
architecture described herein can be used for RF frequency 
synthesis in radio transceivers and other applications. 

[0082] A software based PLL incorporates a reconfigurable 
calculation unit (RCU) that is optimized and programmed to 
sequentially perform all the atomic operations of a PLL or any 
other desired task in a time sharing manner. An application 
specific instruction-set processor (ASIP) incorporating the 
RCU is adapted to spread the computation of the atomic 
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operations out over and completed within an entire PLL ref­
erence clock period. Each computation being performed at a 
much higher processor clock frequency than the PLL refer­
ence clock rate. This functions to significantly reduce the per 
cycle current transient generated by the computations. Fur­
ther, the frequency content of the current transients is at the 
higher processor clock frequency. This results in a significant 
reduction in spurs within sensitive portions of the output 
spectrum. 
[0083] An example application is provided of the software 
based phase locked loop incorporated in a single chip radio, 
e.g., Bluetooth, GSM, etc., that integrates the RF circuitry 
with the digital baseband (DBB) circuitry on the same die. 
[0084] Although the RF spur reduction with dithering 
mechanism is applicable to numerous wireless communica­
tion standards and can be incorporated in numerous types of 
wireless or wired communication devices such a multimedia 
player, mobile station, cellular phone, PDA, DSL modem, 
WPAN device, etc., it is described in the context of a Digital 
RF Processor (DRP™) based transceiver that may be adapted 
to comply with a particular wireless communications stan­
dard such as GSM, Bluetooth, EDGE, WCDMA, WLAN, 
WiMax, etc. It is appreciated, however, that the invention is 
not limited to use with any particular communication stan­
dard and may be used in optical, wired and wireless applica­
tions. Further, the invention is not limited to use with a spe­
cific modulation scheme but is applicable to numerous 
modulation schemes. 
[0085] Note that throughout this document, the term com­
munications device is defined as any apparatus or mechanism 
adapted to transmit, receive or transmit and receive data 
through a medium. The term communications transceiver is 
defined as any apparatus or mechanism adapted to transmit 
and receive data through a medium. The communications 
device or communications transceiver may be adapted to 
communicate over any suitable medium, including wireless 
or wired media. Examples of wireless media include RF, 
infrared, optical, microwave, UWB, Bluetooth, WiMAX, 
WiMedia, WiFi, or any other broadband medium, etc. 
Examples of wired media include twisted pair, coaxial, opti­
cal fiber, any wired interface (e.g., USB, Firewire, Ethernet, 
etc.). The term Ethernet network is defined as a network 
compatible with any of the IEEE 802.3 Ethernet standards, 
including but not limited to 1 OBase-T, 1 OOBase-T or 
1 OOOBase-T over shielded or unshielded twisted pair wiring. 
The terms communications channel, link and cable are used 
interchangeably. The notation DRP is intended to denote 
either a Digital RF Processor or Digital Radio Processor. 
References to a Digital RF Processor infer a reference to a 
Digital Radio Processor and vice versa. 
[0086] The term multimedia player or device is defined as 
any apparatus having a display screen and user input means 
that is capable of playing audio (e.g., MP3, WMA, etc.), video 
(AVI, MPG, WMV, etc.) and/or pictures (JPG, BMP, etc.). 
The user input means is typically formed of one or more 
manually operated switches, buttons, wheels or other user 
input means. Examples of multimedia devices include pocket 
sized personal digital assistants (PDAs), personal media 
player/recorders, cellular telephones, handheld devices, and 
the like. 
[0087] Some portions of the detailed descriptions which 
follow are presented in terms of procedures, logic blocks, 
processing, steps, and other symbolic representations of 
operations on data bits within a computer memory. These 
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descriptions and representations are the means used by those 
skilled in the data processing arts to most effectively convey 
the substance of their work to others skilled in the art. A 
procedure, logic block, process, etc., is generally conceived 
to be a self-consistent sequence of steps or instructions lead­
ing to a desired result. The steps require physical manipula­
tions of physical quantities. Usually, though not necessarily, 
these quantities take the form of electrical or magnetic signals 
capable of being stored, transferred, combined, compared 
and otherwise manipulated in a computer system. It has 
proven convenient at times, principally for reasons of com­
mon usage, to refer to these signals as bits, bytes, words, 
values, elements, symbols, characters, terms, numbers, or the 
like. 
[0088] It should be born in mind that all of the above and 
similar terms are to be associated with the appropriate physi­
cal quantities they represent and are merely convenient labels 
applied to these quantities. Unless specifically stated other­
wise as apparent from the following discussions, it is appre­
ciated that throughout the present invention, discussions uti­
lizing terms such as 'processing,' 'computing,' 'calculating,' 
'determining,' 'displaying' or the like, refer to the action and 
processes of a computer system, or similar electronic com­
puting device, that manipulates and transforms data repre­
sented as physical (electronic) quantities within the computer 
system's registers and memories into other data similarly 
represented as physical quantities within the computer sys­
tem memories or registers or other such information storage, 
transmission or display devices. 
[0089] The invention can take the form of an entirely hard­
ware embodiment, an entirely general-purpose software 
embodiment or an embodiment containing a combination of 
hardware and software elements. In one embodiment, a por­
tion of the mechanism of the invention is implemented in 
software, which includes but is not limited to firmware, resi­
dent software, object code, assembly code, microcode, etc. 
[0090] Furthermore, the invention can take the form of a 
computer program product accessible from a computer-us­
able or computer-readable medium providing program code 
for use by or in connection with a computer or any instruction 
execution system. For the purposes of this description, a 
computer-usable or computer readable medium is any appa­
ratus that can contain, store, communicate, propagate, or 
transport the program for use by or in connection with the 
instruction execution system, apparatus, or device, e.g., 
floppy disks, removable hard drives, computer files compris­
ing source code or object code, flash semiconductor memory 
(USB flash drives, etc.), ROM, EPROM, or other semicon­
ductor memory devices. 

Single Chip Radio 

[0091] A block diagram illustrating a single chip radio 
incorporating a software based ADPLL mechanism of the 
present invention is shown in FIG. 4. For illustration purposes 
only, the transmitter, as shown, is adapted for the GSM/ 
EDGE/WCDMA cellular standards. It is appreciated, how­
ever, that one skilled in the communication arts can adapt the 
transmitter and receiver illustrated herein to other modula­
tions and communication standards as well without departing 
from the spirit and scope of the present invention. 
[0092] The radio, generally referenced 30, comprises a 
radio integrated circuit 31 coupled to a crystal 38, RF front 
end module 46 coupled to an antenna 44, and battery man­
agement circuit 32 coupled to battery 68. The radio chip 31 
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comprises a script processor 60, digital baseband (DBB) pro­
cessor 61, memory 62 (e.g., static RAM), TX block 42, RX 
block 58, digitally controlled crystal oscillator (DCXO) 50, 
slicer 51, power management unit 34 and RF built-in self test 
(BIST) 36. The TX block comprises high speed and low speed 
digital logic block 40 including ~ll modulators (not shown), 
phase domain calculator using dithering (ASIP) 52, digitally 
controlled oscillator (DCO) 56, accumulator 59, sampler 69 
and digitally controlled power amplifier (DPA) 48. The RX 
block comprises a low noise transconductance amplifier 63, 
current sampler 64, discrete time processing block 65, analog 
to digital converter (ADC) 66 and digital logic block 67. 

[0093] The principles presented herein have been used to 
develop three generations of a Digital RF Processor (DRP): 
single-chip Bluetooth, GSM and GSM/EDGE radios realized 
in 130 nm, 90 nm and 65 nm digital CMOS process technolo­
gies, respectively. This architecture is also used as the foun­
dation for a UMTS single-chip radio manufactured using a 45 
nm CMOS process. The common architecture is highlighted 
with features added specific to the cellular radio. The all 
digital phase locked loop (ADPLL) based transmitter 
employs a polar architecture with all digital phase/frequency 
and amplitude modulation paths. The receiver employs a 
discrete-time architecture in which the RF signal is directly 
sampled and processed using analog and digital signal pro­
cessing techniques. 
[0094] A key component is the digitally controlled oscilla­
tor (DCO) 56, which avoids any analog tuning controls. A 
digitally-controlled crystal oscillator (DCXO) generates a 
high-quality base station-synchronized frequency reference 
such that the transmitted carrier frequencies and the received 
symbol rates are accurate to within 0.1 ppm. Fine frequency 
resolution for both DCO and DCXO is achieved through 
high-speed ~ll dithering of their varactors. Digital logic built 
around the DCO realizes an all-digital PLL (ADPLL) that is 
used as a local oscillator for both the transmitter and receiver. 
The polar transmitter architecture utilizes the wide band direct 
frequency modulation capability of the ADPLL and a digi­
tally controlled power amplifier (DPA) 48 for the amplitude 
modulation. The D PA operates in near-class-E mode and uses 
an array of nMOS transistor switches to regulate the RF 
amplitude. It is followed by a matching network and an exter­
nal front-end module 46, which comprises a power amplifier 
(PA), a transmit/receive switch for the common antenna 44 
and RX surface acoustic wave (SAW) filters. Fine amplitude 
resolution is achieved through high-speed ~ll dithering of the 
DPA nMOS transistors. 
[0095] The receiver 58 employs a discrete-time architec­
ture in which the RF signal is directly sampled at the Nyquist 
rate of the RF carrier and processed using analog and digital 
signal processing techniques. The transceiver is integrated 
with a script processor 60, dedicated digital base band pro­
cessor 61 (i.e. ARM family processor and/or DSP) and 
SRAM memory 62. The script processor handles various TX 
and RX calibration, compensation, sequencing and lower­
rate data path tasks and encapsulates the transceiver complex­
ity in order to present a much simpler software programming 
model. 
[0096] The frequency reference (FREF) is generated on­
chip by a 26 MHz (or any other desired frequency, such as 13 
or 38.4 MHz) digitally controlled crystal oscillator (DCXO) 
50, which provides negative resistance to sustain the oscilla­
tions. The output of the DCXO is coupled to slicer 51. The 
output of the slicer is input to the phase domain calculator 
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which comprises a software based PLL in accordance with 
the invention and described in more detail infra. 
[0097] An integrated power management (PM) system 34 
is connected to an external battery management circuit 32 that 
conditions and stabilizes the supply voltage. The PM com­
prises multiple low drop out (LDO) regulators that provide 
internal supply voltages and also isolate supply noise 
between circuits, especially protecting the DCO. The RF 
built-in self-test (RFBIST) 36 performs autonomous phase 
noise and modulation distortion testing, various loopback 
configurations for bit-error rate measurements and imple­
ments the DPA calibration and BIST mechanism. The trans­
ceiver is integrated with the digital baseband, SRAM memory 
in a complete system-on-chip (SoC) solution. Almost all the 
clocks on this SoC are derived from and are synchronous to 
the RF oscillator clock. This helps to reduce susceptibility to 
the noise generated through clocking of the massive digital 
logic. 
[0098] The transmitter comprises a polar architecture in 
which the amplitude and phase/frequency modulations are 
implemented in separate paths. Transmitted symbols gener­
ated in the digital baseband (DBB) processor are first pulse­
shape filtered in the Cartesian coordinate system. The filtered 
in-phase (I) and quadrature (Q) samples are then converted 
through a CORDIC algorithm into amplitude and phase 
samples of the polar coordinate system. The phase is then 
differentiated to obtain frequency deviation. The polar signals 
are subsequently conditioned through signal processing to 
sufficiently increase the sampling rate in order to reduce the 
quantization noise density and lessen the effects of the modu­
lating spectrum replicas. 
[0099] A more detailed description of the operation of the 
ADPLL can be found in U.S. Patent Publication No. 2006/ 
0033582 A1, published Feb. 16, 2006, to Staszewski eta!., 
entitled "Gain Calibration of a Digital Controlled Oscillator," 
U.S. Patent Publication No. 2006/0038710 A1, published 
Feb. 23, 2006, Staszewski eta!., entitled "Hybrid Polar/Car­
tesian Digital Modulator" and U.S. Pat. No. 6,809,598, to 
Staszewski eta!., entitled "Hybrid Of Predictive And Closed­
Loop Phase-Domain Digital PLLArchitecture," all of which 
are incorporated herein by reference in their entirety. 

Mobile Device/Cellular Phone/PDA System 

[0100] A simplified block diagram illustrating an example 
mobile communication device incorporating the software 
based DPLL with dithering mechanism of the present inven­
tion is shown in FIG. 5. The communication device may 
comprise any suitable wired or wireless device such as a 
multimedia player, mobile station, mobile device, cellular 
phone, PDA, wireless personal area network (WPAN) device, 
Bluetooth EDR device, etc. For illustration purposes only, the 
communication device is shown as a cellular phone or smart 
phone. Note that this example is not intended to limit the 
scope of the invention as the software based DPLL using 
dithering mechanism of the present invention can be imple­
mented in a wide variety of wireless and wired communica­
tion devices. 
[0101] The mobile station, generally referenced 70, com­
prises a baseband processor or CPU 71 having analog and 
digital portions. The MS may comprise a plurality of RF 
transceivers 94 and associated antenna(s) 98. RF transceivers 
for the basic cellular link and any number of other wireless 
standards and RATs may be included. Examples include, but 
are not limited to, Global System for Mobile Communication 
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(GSM)/GPRS/EDGE 3G; CDMA; WiMAX for providing 
WiMAX wireless connectivity when within the range of a 
WiMAX wireless network using OFDMA techniques; Blue­
tooth for providing Bluetooth wireless connectivity when 
within the range of a Bluetooth wireless network; WLAN for 
providing wireless connectivity when in a hot spot or within 
the range of an ad hoc, infrastructure or mesh based wireless 
LAN network; near field communications; 60G device; 
UWB; etc. One or more of the RF transceivers may comprise 
an additional a plurality of antennas to provide antenna diver­
sity which yields improved radio performance. The mobile 
station may also comprise internal RAM and ROM memory 
111, Flash memory 112 and external memory 114. Note that 
the mechanism of the invention is operative to not only reduce 
spurious content or emissions of a wireless standard pertain­
ing to a particular radio but to also reduce interference 
between different radios operating simultaneously, which 
enhances coexistence. 
[0102] Several user interface devices include microphone 
(s) 84, speaker(s) 82 and associated audio codec 80 or other 
multimedia codecs 75, a keypad for entering dialing digits 86, 
vibrator 88 for alerting a user, camera and related circuitry 
101, a TV tuner 102 and associated antenna 104, display(s) 
106 and associated display controller 108 and GPS receiver 
90 and associated antenna 92. A USB or other interface con­
nection 78 (e.g., SPI, SDIO, PCI, etc.) provides a serial link to 
a user's PC or other device. An FM receiver 72 and antenna 74 
provide the user the ability to listen to FM broadcasts. SIM 
card 116 provides the interface to a user's SIM card for storing 
user data such as address book entries, etc. Note that the SIM 
card shown is intended to represent any type of smart card 
used for holding user related information such as identity and 
contact information, Authentication Authorization and 
Accounting (AAA), profile information, etc. Different stan­
dards use different names, for example, SIM for GSM, USIM 
for UMTS and ISIM for IMS and LTE. 
[0103] The mobile station comprises software based DPLL 
using dithering blocks 125 which may be implemented in any 
number of the RF transceivers 94. Alternatively, or in addition 
to, the software based DPLL using dithering block 128 may 
be implemented as a task executed by the baseband processor 
71. The software based DPLL using dithering blocks 125, 128 
are adapted to implement the software based DPLL using 
dithering mechanism of the present invention as described in 
more detail infra. In operation, the software based DPLL 
using dithering blocks may be implemented as hardware, 
software or as a combination of hardware and software. 
Implemented as a software task, the program code operative 
to implement the software based DPLL using dithering 
mechanism of the present invention is stored in one or more 
memories 111, 112 or 114 or local memories within the 
baseband processor. 
[0104] Portable power is provided by the battery 124 
coupled to power management circuitry 122. External power 
is provided via USB power 118 or an AC/DC adapter 120 
connected to the battery management circuitry which is 
operative to manage the charging and discharging of the 
battery 124. 

Example ADPLL Polar Transmitter 

[0105] A block diagram illustrating an example ADPLL­
based polar transmitter for wireless applications is shown in 
FIG. 6. The exampleADPLL shown is used as the basis for a 
software based DPLL using dithering mechanism described 
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in more detail infra. A more detailed description of the opera­
tion of the ADPLL can be found in U.S. Patent Publication 
No. 2006/0033582 A1, published Feb. 16, 2006, to Stasze­
wski eta!., entitled "Gain Calibration of a Digital Controlled 
Oscillator," U.S. Patent Publication No. 2006/0038710 A1, 
published Feb. 23, 2006, Staszewski et a!., entitled "Hybrid 
Polar/Cartesian Digital Modulator" and U.S. Pat. No. 6,809, 
598, to Staszewski eta!., entitled "Hybrid Of Predictive And 
Closed-Loop Phase-Domain Digital PLLArchitecture," all of 
which are incorporated herein by reference in their entirety. 

[0106] For illustration purposes only, the transmitter, as 
shown, is adapted for the GSM/EDGE/WCDMA cellular 
standards. It is appreciated, however, that one skilled in the 
communication arts can adapt the transmitter illustrated 
herein to other modulations and communication standards as 
well without departing from the spirit and scope of the present 
invention. 

[0107] The transmitter, generally referenced 130, is well­
suited for a deep-submicron CMOS implementation. The 
transmitter comprises a complex pulse shaping filter 168, 
amplitude modulation (AM) block 169 andADPLL 132. The 
circuit 130 is operative to perform complex modulation in the 
polar domain in addition to the generation of the local oscil­
lator (LO) signal for the receiver. All clocks in the system are 
derived directly from this source. Note that the transmitter is 
constructed using digital techniques that exploit the high 
speed and high density of the advanced CMOS, while avoid­
ing problems related to voltage headroom. The ADPLL cir­
cuit replaces a conventional RF synthesizer architecture 
(based on a voltage-controlled oscillator (VCO) and a phase/ 
frequency detector and charge-pump combination), with a 
digitally controlled oscillator (DCO) 148 and a time-to-digi­
tal converter (TDC) 162. All inputs and outputs are digital and 
some even at multi-GHz frequency. 

[0108] The core of the ADPLL is a digitally controlled 
oscillator (DCO) 148 adapted to generate the RF oscillator 
clock CKV. The oscillator core (not shown) operates at a 
multiple of the 1.6-2.0 GHz (e.g., 4) high band frequency or 
at a multiple of the 0.8-1.0 GHz low band frequency (e.g., 8). 
Note that typically, the multiple is a power-of-two but any 
other suitable integer or even fractional frequency relation­
ship may be advantageous. The output of the DCO is then 
divided for precise generation of RX quadrature signals, and 
for use as the transmitter's carrier frequency. The single DCO 
is shared between transmitter and receiver and is used for both 
the high frequency bands (HB) and the low frequency bands 
(LB). In addition to the integer control of the DCO, at least 
3-bits of the minimal varactor size used are dedicated for ~ll. 
dithering in order to improve frequency resolution. The DCO 
comprises a plurality ofvaractor banks, which may be real­
ized as n-poly/n-well inversion type MOS capacitor (MOS­
CAP) devices or Metal Insulator Metal (MIM) devices that 
operate in the flat regions of their C-V curves to assist digital 
control. The output of the DCO is a modulated digital signal 
at fRF" This signal is input to the pre-power amplifier (PPA) 
152. It is also input to the RF low band pre-power amplifier 
154 after divide by two via divider 150. 

[0109] The expected variable frequency fvis related to the 
reference frequency fR by the frequency command word 
(FCW). 
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(1) 

The FCW is time variant and is allowed to change with every 
cycle T R= 1/fR of the frequency reference clock. With W p=24 
the word length of the fractional part of FCW, the ADPLL 
provides fine frequency control with 1.5 Hz accuracy, accord­
ingto: 

(2) 

The number of integer bits WI=8 has been chosen to fully 
cover the GSM/EDGE and partial WCDMA band frequency 
range of fv=1,600-2,000 MHz with an arbitrary reference 
frequency fR~8 MHz. 
[0110] The ADPLL operates in a digitally-synchronous 
fixed-point phase domain as follows: The variable phase 
accumulator 156 determines the variable phase Rv(i] by 
counting the number of rising clock transitions of the DCO 
oscillator clock CKV as expressed below. 

; 

Rv[t] = ~1 
(3) 

l=O 

The index i indicates the DCO edge activity. The variable 
phase Rv(i] is sampled via sampler 158 to yield sampled 
FREF variable phase Rv(k], where k is the index of the FREF 
edge activity. The sampled FREF variable phase Rv(k] is 
fixed-point concatenated with the normalized time-to-digital 
converter (TDC) 162 output E[k]. The TDC measures and 
quantizes the time differences between the frequency refer­
ence FREF and the DCO clock edges. The sampled differen­
tiated (via block 160) variable phase is subtracted from the 
frequency command word (FCW) by the digital frequency 
detector 138. The frequency error fE[k] samples 

fE[k]~ FCW- [(R vfk}-E{k])-(R vfk-1]-E[k-1])] (4) 

are accumulated via the frequency error accumulator 140 to 
create the phase error <P£[k] samples 

k 

¢E[k] = ~fE[k] 
(5) 

l=O 

which are then filtered by a fourth order IIR loop filter 142 and 
scaled by a proportional loop attenuator a. A parallel feed 
with coefficient p adds an integrated term to create type-II 
loop characteristics which suppress the DCO flicker noise. 
[0111] The IIR filter is a cascade offour single stage filters, 
each satisfying the following equation: 

y[kj~(1-'-)-y[k-1]+h[k] 

wherein 
[0112] x[k] is the current input; 
[0113] y[k] is the current output; 
[0114] k is the time index; 

(6) 
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[0115] X is the configurable coefficient; 
The 4-pole IIR loop filter attenuates the reference and TDC 
quantization noise with an 80 dB/dec slope, primarily to meet 
the GSM/EDGE spectral mask requirements at 400kHz off­
set. The filtered and scaled phase error samples are then 
multiplied by the DCO gain Knco normalization factor fRI 

Knc9 via multiplier 146, where fR is the reference frequency 
and Knco is the DCO gain estimate, to make the loop char­
acteristics and modulation independent from Knco· The 
modulating data is injected into two points oftheADPLL for 
direct frequency modulation, via adders 136 and 144. A hit­
less gear-shifting mechanism for the dynamic loop band­
width control serves to reduce the settling time. It changes the 
loop attenuator a several times during the frequency locking 
while adding the (a/a2 -1)<jl 1 de offset to the phase error, 
where indices 1 and 2 denote before and after the event, 
respectively. Note that <jl 1=<jl2 , since the phase is to be con-
tinuous. 
[0116] The frequency reference FREF is input to the 
retimer 166 and provides the clock for the TDC 162. The 
FREF input is resampled by the RF oscillator clock CKV via 
retimer block 166 which may comprise a flip flop or register 
clocked by the reference frequency FREF. The resulting 
retimed clock (CKR) is distributed and used throughout the 
system. This ensures that the massive digital logic is clocked 
after the quiet interval of the phase error detection by the 
TDC. Note that in the example embodiment described herein, 
the ADPLL is a discrete-time sampled system implemented 
with all digital components connected with all digital signals. 

Software Based ADPLL Architecture 

[0117] A simplified block diagram illustrating an embodi­
ment of the software basedADPLL incorporating a processor 
based phase domain calculator is shown in FIG. 7. The 
ADPLL circuit, generally referenced 180, comprises a phase 
domain calculator 174, DCO 186, integer feedback block 
188, fractional feedback block 189 and programmable frac­
tional-N clock divider 182. 
[0118] In operation, the phase domain calculator replaces 
the conventional ADPLL circuit with a software based 
ADPLL. As with the conventional ADPLL, it is operative to 
generate the DLO update that is input to the DCO 186 which 
in turn generates the RF output frequency clock CKV. The 
phase domain calculator receives the FCW commands, vari­
able phase information (i.e. integer and fractional feedback) 
and the reference frequency clock FREF, which typically 
ranges between 13 and 52 MHz. The processing clock output 
of the programmable clock divider 182 runs at a frequency 
significantly higher than FREF, such as in the range 200 to 
600 MHz, for example. 
[0119] In accordance with the invention, the phase domain 
calculator performs the ADPLL operations serially rather 
than in parallel. In order the complete the ADPLL computa­
tion within reference clock cycle, the much faster processor 
clock is used to clock the phase domain calculator internal 
circuitry. 
[0120] The solution uses a reconfigurable computational 
unit (RCU) or ALU (described infra) that is time shared for 
most or all computations within theADPLL. The RCU and its 
related configuration control logic (constituting a special pur­
pose microcomputer) replaces the dedicated and distributed 
random logic within a conventional ADPLL. The RCU is 
controlled via microcode stored in on-chip memory such as 
random access memory (RAM), read only memory (ROM), 
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Flash memory, etc. Since the computational unit is time 
shared among most operations, it is operated at a much higher 
clock rate than the conventional ADPLL which performs all 
calculations in parallel using dedicated hardware circuits. 
The RCU circuitry is optimized to perform all the required 
ADPLL atomic computations within one reference clock 
cycle. 

[0121] A block diagram illustrating an example embodi­
ment of the phase domain calculator of the present invention 
in more detail is shown in FIG. 8. The phase domain calcu­
lator, generally referenced 190, comprises anALU (or RCU) 
202, instruction and data memory 192, register file 194, 
sequencer 196, latches 208, 206, multiplexers 209, 198, 200, 
204. 

[0122] The instructions for implementing the ADPLL 
operation are stored in the instruction memory. Instructions 
are input to the sequencer which performs the instruction 
decoding and generates the appropriate signals to execute 
each instruction. The register file stores intermediate values 
calculated by the ALU. 

[0123] A timing diagram illustrating the processing clock 
and reference frequency timing is shown in FIG. 9. As shown, 
the processing clock 210, used to clock the memory, 
sequencer and register file, is at a significantly higher clock 
rate than the reference clock FREF 212. This is required in 
order the complete an operation cycle of the ADPLL within a 
single reference clock period. 

[0124] A block diagram illustrating an instruction view of 
the software basedADPLL architecture of the present inven­
tion is shown in FIG. 10. The circuit, generally referenced 
220, comprises a phase calculation unit 222, gain normaliza­
tion 238, DCO 240, gain calibration 242, accumulator/incre­
menter 244 and variable phase sampler 246. The phase cal­
culation unit shows an instruction view of the ADPLL 
architecture performed in software. In particular, the phase 
calculation unit 222 comprises a phase detector 224, fre­
quency error accumulator 226, IIR loop filter 228, a propor­
tional gainmultiplier230, IIRfilter232, adder234, DCO gain 
multiplier 236, offset phase error adder248, phase error accu­
mulator 250 and integral or p gain multiplier 252. Both pro­
portional and integral multipliers preferably use power-of­
two arithmetic so that their respective multipliers could be 
implemented as bit-shift operators. For non-power-of-two 
arithmetic, sum-of-power-of-two or even full multipliers can 
be used with the consequent increase in circuit cost and com­
plexity. 
[0125] The ADPLL circuit shown is an ADPLL architec­
ture that is commonly used in wireless applications for RF 
frequency generation. In this digital architecture, the tradi­
tional VCO is replaced with a digitally controlled oscillator 
(DCO) and the oscillating frequency of the DCO is controlled 
by a frequency command word (FCW) instead of the refer­
ence clock, as described in detail supra. The phase detecting 
and filtering parts are all digital with intensive digital signal 
processing involved as highlighted. 

[0126] In operation, the ADPLL operation is partitioned 
into a plurality of atomic operations, wherein each atomic 
operation performs a complete processing step within the 
ADPLL. For example, an adding operation representing 
adder 224 comprises one atomic operation. Similarly, accu­
mulation block 226 and each offour elemental first-order IIR 
operations in IIR filter block 228 also comprise a single 
atomic operation each. Each atomic operation is performed 
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by a separate instruction. Individual instructions are provided 
for each atomic operation in the ADPLL (or any other task). 
[0127] The computation elements within the phase calcu­
lation block 222 are the elements implemented and executed 
as software instructions. The computations within block 222 
can be expressed as pseudo code as shown in the following 
Listing 1. 

Listing 1: Sequential pseudo-code for ADPLL phase computation 

Ll: y16 ~ y15- S1 
S1 ~ y15 
y1 ~FCW- y16 
y2 ~ y2 + y1 
y3 ~ IIR (a1, y2, y3) 

y4 ~ IIR (a2, y3, y4) 
y5 ~ IIR (a3, y4, y5) 
y6 ~ IIR (a4, y5, y6) 
y7 ~ SHL (y6, alpha) 
yll ~ IIR (gs, y7, yll) 
y9 ~ y6- PhE 
y10~y10+y9 

y12 ~ SHL (y10, rho) 
y13 ~ y11 + y12 
y14 ~ y13 *gain 
jumpLl 

I I S 1 is the store element 
II delay 

I I accwnulation 
I I 4th order infinite impulse response(IIR) 
filter 

I I shift operation 

I I implies accwnulation 

I I operates in a continuous loop 

[0128] As described supra, in prior art ADPLL circuits, all 
ADPLL phase computations are implemented using dedi­
cated hardware (i.e. a hardwired design), which limits the 
ability to adjust theADPLL algorithm. In accordance with the 
software based architecture of the present invention, these 
ADPLL functions are integrated within a processor using 
shared hardware thereby providing significant flexibility to 
the ADPLL algorithm. 

Processor Based ADPLL Architecture 

[0129] A block diagram illustrating an example processor 
based software ADPLL architecture of the present invention 
is shown in FIG. 11. The AD PLL circuit, generally referenced 
260, comprises an application specific instruction-set proces­
sor (ASIP) 262, DCO 286, accumulator 288 and variable 
phase sampler 289. The ASIP 262 comprises instruction 
memory 264, fetch block 266, decode block 268, data bus 
278, RCU 270, S-unit 272, L-unit 274, A-unit 276, register 
file 280, data memory 282 and interface 284. 
[0130] All ADPLL computations as delineated in Listing 1 
above are incorporated into a so-called Application Specific 
Instruction-set Processor (ASIP) 262. It is appreciated that a 
general purpose processor may also be used to perform the 
ADPLL operation. An ASIP, however, is far more efficient 
due to the instruction set being adapted to perform a small but 
dedicated set of atomic operations. 
[0131] In operation, theASIP processor stores theADPLL 
software instructions in the instruction memory 264. The 
instructions are then fetched from the instruction memory via 
fetch block 266 and fed into the decoding block 268. All 
required control signals are generated through the decoding 
block to control the operation of the various computational 
units, including the A-Unit 276 for performing arithmetic 
operations, e.g., addition, subtraction, etc., L-Unit 274 for 
performing logic operations, e.g., AND, OR, XOR, etc. and 
S-Unit 272 for performing data storage and movement opera­
tions. A reconfigurable calculation unit (RCU) 270 is con­
structed to provide application specific instructions for the 
ADPLL. The RCU, for example, is operative to implement 
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the !-stage IIR filtering operation within a single instruction. 
It is noted that the application driven customized instruction 
set is what differentiates an ASIP from a general purpose 
processor which performs ADPLL computations much less 
efficiently to the extent that it may not even be able to com­
plete the necessary computations within the reference clock 
period. 
[0132] The ASIP processor is operative to read the FCW 
and variable phase (Ph V) inputs, sequentially perform all the 
computations (i.e. atomic operations) required for the 
ADPLL as presented in Listing 1 within one system reference 
clock cycle and send the resulting tuning word DCO_TUNE 
(i.e. DLO update) to the DCO. which in tum uses the tuning 
word to adjust its output frequency. It is important to note that 
all the computations are performed via the programmed soft­
ware stored in instruction memory of the ASIP. Note also that 
the majority of the computations are performed by the RCU, 
which is designed specifically to implement the atomic opera­
tions of the targetedADPLL application. 

Reconfigurable Calculation Unit (RCU) 

[0133] The structure of the RCU will now be described in 
more detail. As described above, all the computations in 
Listing 1 are described in terms of atomic arithmetic opera­
tions, such as additions, subtractions, shifting, multiplica­
tions, etc. and as more complicated operations, such as IIR 
filtering. A prior art hardwired implementation simply instan­
tiates the number of hardware operators equal to the number 
of atomic operations required by theADPLL algorithm. This, 
however, has its drawbacks as discussed supra. 
[0134] The ASIP based design of the present invention 
utilizes one or more reconfigurable computational units that 
are used to perform all arithmetic operations implementing 
theADPLL algorithm. This computational unit is "recycled" 
sequentially among all the arithmetic operations within a 
single cycle oftheADPLL system clock. The internal state of 
theADPLL is stored between clock cycles in internal storage 
elements (i.e. register file, data memory, etc.). An important 
aspect of the RCU design is the greatly increased application 
efficiency along with a maximization of resource reuse. 
[0135] Detailed knowledge of the task to be implemented 
(e.g., ADPLL algorithm) is important in creating the func­
tionality of the computational unit in order to optimize its 
complexity and system throughput requirements. In the case 
of an ADPLL algorithm, all the elemental ADPLL computa­
tions (except for IIR filtering) are either add/subtract or 
power-of-two multiply operation. Therefore, the invention 
provides for a single IIR computation that has been optimized 
to be represented as a single operation in the computational 
unit. 
[0136] FIGS. 12A, 12B, 12C and 12D illustrate the map­
ping process and the resulting configuration of the RCU. In 
particular, FIG. 12A is a diagram illustrating the output and 
transfer function equations for the infinite impulse response 
(IIR) filter portion of the ADPLL. FIG. 12B is an equivalent 
block diagram implementing the output equation shown in 
FIG. 12A. The circuit, generally referenced 290, comprises 
multipliers 292, 298, adders 294, 299 and unit delay 296. 
[0137] FIG. 12C is an equivalent block diagram imple­
menting the output equation shown in FIG. 12A whereby the 
multiplication operations have been replaced with shift 
operations. The circuit, generally referenced 300, comprises 
shift operations 302,309, adders 304,308 and unit delay 306. 
FIG. 12D is a diagram illustrating the resultant reconfigurable 
calculation unit (RCU) implementing the output equation 
shown in FIG. 12A. The RCU, generally referenced 310, 
comprises shifter 312, 318 and adders 314, 316. The unit 
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delay element is replaced with data lines Rb and Rd for 
reading and writing to an external memory such as the register 
file or data memory. 
[0138] Thus, for application to anADPLL, the multiplica­
tion operation in the IIR filter is simplified with a shifting 
operation. The final RCU in 12D is a pure computation unit 
without any storage element. To map the IIR equation below 

to the RCU unit, the following applies: 
[0139] xk maps to RCU input Ra; 
[0140] Yk-l maps to RCU input Rb; 
[0141] ykmaps to RCU output Rd; 

(7) 

[0142] The RCU unit is made further configurable to 
accommodate all the main computations for the AD PLL in an 
efficient manner. A block diagram illustrating an example 
RCU unit for implementing theADPLL circuit way is shown 
in FIG. 13. The RCU and related circuitry, generally refer­
enced 320, comprises a plurality of elements as follows: two 
data inputs (Ra, Rb ), two data outputs (Rd_st, Rd), three 
atomic computation units (first addition/subtraction 324, 
shifter 326, second addition/subtraction 328), two latch/stor­
age elements (input latch S_d 336 and output latch Rd 330), 
local registers for data storage, e.g., shift amount a, FCW 340, 
PhE 342, multiplexers for data steering 332, 334 and control/ 
configure signals. 
[0143] In operation, the RCU takes input data Ra and goes 
through the first addition/subtraction followed by a shifting 
operation followed by a second addition/subtraction. The 
data is then sent to the outside register file Rd_st or latched 
(Rd) for the next computation. An input latching element 
(S_d) is included as part of a differentiation operation. All the 
computation units including the data paths inside the RCU are 
configurable with the control/configure signals generated by 
the ASIP decoding block. 
[0144] Table 1 below shows the mapping of the customized 
instruction set provided by the RCU and their corresponding 
targeted computations in the ADPLL. 

TABLE 1 

Customized instructions and their 
corresponding computations in the ADPLL 

Computations inADPLL 

L1: y16 ~ y15- S_d 
S_d ~y15 
yl ~FCW- y16 
y2 ~ y2 + yl 
y3 ~ IIR (al, y2, y3) 
y4 ~ IIR (a2, y3, y4) 
y5 ~ IIR (a3, y4, y5) 
y6 ~ IIR (a4, y5, y6) 
y7 ~ SHR (y6, alpha) 
yll ~ IIR(gs, y7, yll) 
y9 ~ y6- PhE 
ylO~y10+y9 

y12 ~ SHR (ylO, rho) 
y13 ~ yll + y12 
y14 ~ y13 *gain 
jumpLl 

Customized Instructions 

F_Diff(y15, y16) 

F_PheAcc (yl, y2) 

F _IIRl (y2, y3) 
F _IIR2 (y3, y4) 
F _IIR3 (y4, y5) 
F _IIR4 (y5, y6) 
F _SHR (y6, y7) 
F_IIRgs (y7, yll) 
F _IntAcc (y6, ylO) 

F_SHRAdd (ylO, yll, y13) 

F_Gain() 
NA 

[0145] Detailed descriptions for most of the instructions in 
Table 1 above are provided below. For each instruction, a 
corresponding figure is provided illustrating the data paths 
and computation elements in the RCU used in executing the 
instruction. Elements in each of the figures described below 
operate as described above in connection with FIG. 13. Fur-
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ther, the bold lines or arrows in each figure highlight the data 
path for that particular instruction. 

F _Difflnstruction 

[0146] 

F_Diff(y15, y16): yi6~yi5-S_d 

S_d~yiS 

A block diagram illustrating the RCU unit 350 for imple­
menting the F _Diff( ) instruction is shown in FIG. 14. The 
F _Diff instruction implements a differentiation operation. 
The bold arrow lines highlight the data path in the RCU. Input 
y15 is received and the first addition/subtraction unit is 
bypassed (e.g., the second or negating input to the first adder 
is set to zero). The shifting unit is also bypassed and a sub­
traction (via the second addition/subtraction unit) is per­
formed with local register S_d. The result y16 is output via 
Rd_st. The instruction also updates S_d with input y15 via 
register latch S_d. 

F _PheAcc Instruction 

[0147] 

F_PheAcc(y16,y2):yl~FCW-y16 

y2~y2+yl; 

A block diagram illustrating the RCU unit 352 for imple­
menting the F _PheAcc( ) instruction is shown in FIG. 15. 
This instruction implements a subtraction plus an accumula­
tion operation. It takes the input y16, performs the accumu­
lation operation using the first addition/subtraction unit, 
bypasses any shifting (i.e. the shifter is configured for pass 
through operation). A subtraction operation with local regis­
ter FCW is then performed. The accumulation is done on the 
Rd register latch. 

F _IIR Instruction 

[0148] 

F_IIR( ): Rd~Rb»(l-a)+Ra»a 

A block diagram illustrating the RCU unit 354 for imple­
menting the F _IIR() instruction is shown in FIG. 16. This 
instruction implements an IIR filtering operation. The shift 
amount 'a' is pre-set locally within the RCU. Thus, the RCU 
is optimized to have the capability of performing an IIR filter 
operation in a single instruction cycle. This permits an effi­
cient computation of the atomic operations needed to imple­
ment the ADPLL within a single reference clock period. 

F _SHR Instruction 

[0149] 

F_SHR(Ra, Rd): Rd~Ra»a 

A block diagram illustrating the RCU unit 356 for imple­
menting the F _SHR() instruction is shown in FIG. 17. This 
instruction implements a shifting operation. The shift amount 
'a' is pre-set locally within the RCU. The two addition/sub­
traction units are bypassed for this instruction. 

F _IntAcc Instruction 

[0150] 

F_IntAcc(y6,ylO): y9~y6-PhE 
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A block diagram illustrating the RCU unit 358 for imple­
menting the F _IntAcc() instruction is shown in FIG. 18. This 
instruction implements a subtraction and an accumulation 
operation. It takes the input y16, performs an accumulation in 
the first addition/subtraction unit and then bypasses the 
shifter. A subtraction is then performed using local register 
PhE. 

F SHRAdd Instruction 

[0151] 

F_SHRAdd(ylO, yll, y13): y12~SHR(y10, rho) 

y13~yll+y12 

A block diagram illustrating the RCU unit 360 for imple­
menting the F _SHRAdd() instruction is shown in FIG. 19. 
This instruction implements a shifting operation followed by 
an addition operation. The shift amount RHO is set locally in 
the RCU. Input y10 is received, the first addition/subtraction 
unit is bypassed and then a shifting operation is performed. 
The shifter output then undergoes an addition operation via 
the second addition/subtraction unit. 

F _Gain Instruction 

[0152] The F _Gain() instruction performs a multiplication 
by a gain value. In the case where the gain value is a power of 
two, the shift operation is used to perform this instruction. For 
non power of two gain values, a multiplier in the RCU is used 
(not shown). 
[0153] In addition to the instructions described in detail 
hereinabove, the RCU comprises other customized instruc­
tions that are needed for general purpose applications, such as 
for setting RCU local register values, etc. 

RF Spur Reduction 

[0154] The effects of the software based ADPLL on RF 
spur reduction will now be described. As described supra, in 
prior art single-chip radios, the phase domain calculation 
portion of the ADPLL signal processing is traditionally 
implemented using dedicated random logic gates. In such an 
implementation, all computations are initiated on a rising 
edge of the ADPLL system clock and latched on the subse­
quent rising edge of the clock. This is shown in FIG. 20 which 
illustrates a timing diagram of several ADPLL processing 
clock options and the current spikes resulting therefrom. 
Trace 370 is the FREF system reference clock while trace 37 4 
represents the processor clock. 
[0155] Since the majority of circuit switching activity in the 
PLL (and also other close-in circuitry) is centered on a rising 
edge of the FREF system clock, most of the digital current is 
being switched at this edge as well, as indicated by trace 372. 
It is noted that depending on the particular implementation of 
the flip-flop registers, the current induced by the falling edge 
of the clock could be substantial. These digital current surges 
find their way into on-chip DCO and PA circuit nodes in the 
transmitter and LNA and mixer nodes in the receiver via 
various parasitic coupling mechanisms. The current rush 
energy due to digital processing at the system clock rate gets 
upconverted into the RF spectrum by the DCO, resulting in 
unacceptable RF spurs that are close in frequency to the 
carrier or fall into the protected frequency bands, such as the 
receive band, GPS band, etc. The Federal Communications 
Commission (FCC) rules and numerous wireless communi­
cation standards place very low limits on the energy outside of 
the information carrying frequency range that is allowed to be 
radiated from wireless terminals. In the receiver, the spurious 
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tones in the local oscillator (LO) can degrade blocking or 
interferer performance through reciprocal mixing. 
[0156] These low frequency RF spurs are normally very 
difficult to filter out in a wireless terminal before they are 
radiated by the antenna because of their proximity in the 
spectrum to the carrier as shown in FIG. 21. The FREF clock 
spurs 384 are shown around the carrier 382. The filtering 
envelope 380 will not sufficiently attenuate the spurs to meet 
the various wireless standards. This is because a high order 
filtering is required to block the undesired energy, i.e. a steep 
filter envelope is required. The typical combined filtering 
effects of the PA (power amplifier), SAW filter and antenna 
filter out only a portion of the energy of these undesired RF 
spurs, thus making FCC rules and wireless standard compli­
ance extremely difficult to meet. 
[0157] In contrast, the mechanism of the present invention 
is operative to perform the atomic operations serially at the 
much faster processor rate. At each processor cycle, only a 
single instruction is executed resulting in reduced current 
transients being generated, as indicated in trace 376. This 
results in significantly reduced RF spur generation. In the 
present invention, the effects these generated spurs have on 
RF performance are two-fold: (1) the spurs are shifted to 
higher frequencies where they are easier to filter out by the 
oscillator's LC tank, DPA matching network, PA matching 
network, bandpass filtering in the RF front-end module, as 
well as overall parasitic RC (resistor-capacitor) network; and 
(2) the energy of each spur is reduced. 
[0158] In accordance with the invention, the software based 
ADPLL significantly reduces the generation of RF spurs in 
sensitive frequency bands of the DRP by changing the fre­
quency plan of the switching logic gates. The ASIP/RCU 
performs the bulk of computations at the processor clock rate 
which is much higher in frequency than that of the system 
reference clock (FREF). This results in the RF spurs being 
shifted outside the sensitive regions close to the carrier fre­
quency as shown in FIG. 22. The processing clock spurs 392 
are now far away from the carrier 392 and the filtering enve­
lope 390 is able to remove these spurs with ease. 
[0159] It is noted that the total amount of energy consumed 
in performing computations in the conventional ADPLL and 
the software based ADPLL of the invention is substantially 
the same. The frequency content of this energy, however, is 
significantly different. In case of the conventional ADPLL, 
the computation energy is concentrated at the reference clock 
edges and therefore has strong low frequency harmonic. 
[0160] In case of the software basedADPLL, the compu­
tation energy is spread out between the reference clock edges 
(which may or may not coincide with the processor clock 
edges). The spreading out of the computation energy over the 
reference clock period serves to create a much higher fre­
quency harmonic. When these harmonics mix with the car­
rier, they are offset in frequency around the carrier. The fil­
tering requirements to remove the undesired RF spurs close to 
the carrier are excessive, as in the case of the conventional 
ADPLL. The further away from the carrier the RF spurs are 
located, the more relaxed the filtering requirements become. 
Changing the frequency content of the computation energy to 
(1) improve the RF spectrum characteristics or (2) consider 
one or more protected frequency bands (e.g., RX band, GPS 
band) is referred to as frequency planning. Such frequency 
planning also helps to relax circuit design constraints, such as 
power routing resistance and decoupling capacitance values, 
which contribute to the magnitude of the energy surges at the 
clock edges. 
[0161] Further, the frequency planning can be modified by 
varying the amount of oversampling (i.e. the ratio of proces-
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sor clock frequency to the reference frequency FREF). The 
frequency planning can be lowered as long as the minimum 
required processing throughput in the processor is main­
tained. Otherwise, the required atomic operations of the 
ADPLL may not be completed within a reference clock cycle. 
[0162] It is appreciated that the application of the software 
based mechanism described herein is not limited to an 
ADPLL. The mechanism can be applied to any computing or 
processing task that can benefit from reduced spur generation. 
A flow diagram illustrating the RF spur reduction method of 
the present invention is shown in FIG. 23. In the general case, 
the task is first partitioned into a plurality of atomic operations 
(step 400). The computation of the atomic operations 
required to complete the task are spread out and/or reshuffled 
over an entire reference clock period (step 402). The compu­
tation of each atomic operation occurs at the higher processor 
clock rate, rather that the slower reference clock rate (step 
404). 

Software Dithering to Reduce Frequency Spurs 

[ 0163] As described infra, the software AD PLL is operative 
to push the frequency spurs from a low reference clock fre­
quency to a high processor clock frequency. The software 
running in the processor, however, contains the low frequency 
software loops, which still function to create low frequency 
energy spikes. To illustrate this, an example is shown below. 
The example software loop demonstrates how the loop size of 
the script processor (i.e. the control processor within radio, 
e.g., block 60 in FIG. 4) affects the spur pattern generated. 
Assume the script processor runs the following simple loop 
shown in Listing 2 below: 

Listing 2: Example software loop 

L1: R4 ~ [5, 10, 30] II [Fig. 24, Fig. 25, Fig. 26], respectively 
while (R4 !~ 0) { 

R4~R4-1 

jump L1 I I operates in a continuous loop 

[0164] A diagram illustrating a spurious frequency pattern 
with 3.8 MHz gaps between spurs is shown in FIG. 24. In this 
graph, the channel frequency is set to 1859 MHz and R4=5. 
The graph shows a spurious pattern having frequency gaps of 
approximately 3.8 MHz between spurs. 
[0165] A diagram illustrating a spurious frequency pattern 
with 2.0 MHz gaps between spurs is shown in FIG. 25. In this 
graph, the channel frequency is set to 1859 MHz and R4=10. 
The graph shows a spurious pattern having frequency gaps of 
approximately 2.0 MHz between spurs. 
[0166] A diagram illustrating a spurious frequency pattern 
with 0.7 MHz gaps between spurs is shown in FIG. 26. In this 
graph, the channel frequency is set to 1859 MHz and R4=30. 
The graph shows a spurious pattern having frequency gaps of 
approximately 0.7 MHz between spurs. 
[0167] For a value of R4=15, the gap between frequency 
spurs is approximately 1.4 MHz. It is noted that the frequency 
gap between these related spurs is proportional to the loop 
frequency (i.e. loop size), as shown in FIG. 27 wherein trace 
410 represents the data calculated in accordance with the 
expression y=23/(x+1) and trace 423 represents measured 
data. As the loop size increases, i.e. loop frequency decreases, 
the spur gaps decreases. 
[0168] Thus, continuing to change the loop size causes the 
energy of the loop frequency spurs to be spread out. The 
following example is presented to illustrate this. A diagram 
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illustrating a square wave with and without dithering is shown 
in FIG. 28 wherein trace 414 represents a square wave with­
out dithering and trace 416 represents a square wave with 
dithering. The first waveform 414 is a uniform square wave 
having a period of 1 flS. The second waveform 416 is a square 
wave having a varied period. The period of waveform 416 
changes and repeats in accordance with the following pattern: 
10/8 flS, 1 flS, 10/8 flS, 6/8 flS, 9/8 flS, 5/8 flS, 7/8 flS, 10/8 flS, 7/8 
flS, 9/8 flS, 1 flS, 6/8 flS, 10/8 flS, 5/10 flS, 10/8 flS, 7/8 flS, 9/8 flS, 
etc. It is important to note that the average period of waveform 
416 with dithering is still 1 flS, the same as waveform 414 
without dithering. 

[0169] A diagram illustrating the power spectral density of 
the square wave 414 (FIG. 28) without dithering is shown in 
FIG. 29. Note that the spectrun1 contains spikes at the main 
frequency (i.e. 1 MHz) and its harmonics. A diagram illus­
trating the power spectral density of the square wave 416 
(FIG. 28) with dithering is shown in FIG. 30. It is important to 
note that by simply dithering the period of the square wave, 
the peak spurs power is reduced by more than 6 dB. The 
power at those peak frequencies is spread out to other fre­
quencies since the total power must remain the same. 

[0170] In accordance with the invention, the technique of 
changing the loop size is applied to the data sample based 
operation such as the software based DPLL. In the software 
based DPLL, considering a reference clock of 26 MHz (i.e. 
data samples arrive at the processor at a rate of26 MHz), then 
the software loop also runs at 26 MHz. In general, however, 
the processor will likely have some level of MIPS margin. In 
this case, the processor finishes processing the current data 
sample and waits for the next data sample to arrive. In par­
ticular, it waits at the end of the software loop for the next data 
sample to arrive. Preferably, a mechanism to maintain the 
correct average processing rate is used. Such a mechanism 
could be implicitly realized or one or more extra steps are 
included in the method. 

[0171] Using the pseudo-code in Listing 1 presented supra 
as an example, a wait instruction is inserted at the end of the 
loop, as shown below in Listing 3. 

Listing 3: Pseudo-code for ADPLL phase computation with 
wait instruction 

Ll: y16 ~ y15- S1 
S1 ~y15 
y1 ~FCW -y16 
y2 ~y2 +y1 
y3 ~ IIR (a1, y2, y3) 

y4 ~ IIR (a2, y3, y4) 
y5 ~ IIR (a3, y4, y5) 
y6 ~ IIR (a4, y5, y6) 
y7 ~ SHL (y6, alpha) 
yll ~ IIR (gs, y7, yll) 
y9 ~y6- PhE 
y10~y10+y9 

y12 ~ SHL (y10, rho) 
y13 ~ yll + y12 
y14 ~ y13 *gain 
wait_ data 
jump L1 

I I S 1 is the store element 
II delay 

I I accumulation 
I I 4th order infinite impulse response(IIR) 
filter 

II shift operation 

II implies accumulation 

I I wait for next data sample to arrive 
I I operates in a continuous loop 

[0172] If the system comprises a relatively small sized 
buffer (i.e. FIFO) for the data samples, then the wait time can 
be adjusted such that the software loop waits a different 
number of cycles for different data samples. 
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Listing 4: Pseudo-code for ADPLL phase computation with 
randomized wait time 

Ll: y16 ~ y15- Sl 
Sl ~ y15 
yl ~FCW- y16 
y2 ~ y2 + yl 
y3 ~ IIR (al, y2, y3) 

y4 ~ IIR (a2, y3, y4) 
y5 ~ IIR (a3, y4, y5) 
y6 ~ IIR (a4, y5, y6) 
y7 ~ SHL (y6, alpha) 
yll ~ IIR (gs, y7, yll) 
y9 ~ y6- PhE 
ylO~y10+y9 

y12 ~ SHL (ylO, rho) 
y13 ~ yll + y12 
y14 ~ y13 *gain 
waitrO 

jumpLl 

I I S 1 is the store element 
II delay 

I I accwnulation 
I I 4th order infinite impulse response(IIR) 
filter 

I I shift operation 

I I implies accwnulation 

I I wait for rO cycles, rO changes each 
iteration of 
I I the loop in accordance with a 
predetermined 
I I pattern of randomized values 
I I operates in a continuous loop 

[0173] In the pseudo-code in Listing 4, register rO is set to 
a random value at each iteration of the software loop, The 
values for rO may be set in accordance with a predetermined 
random value pattern, Each instruction in the software loop 
will have a similar repeating pattern as that of waveform 416 
(FIG, 28), Thus, the coupling energy of each instruction will 
have the similar spreading effects as analyzed for the wave­
forms in FIG, 28, 
[0174] A flow diagram illustrating a first software dithering 
method of the present invention is shown in FIG, 32, First, the 
task (e,g,, DPLL computation) is partitioned into a plurality 
of atomic operations (step 420), A randomized wait instruc­
tion is inserted in the loop, typically, but not necessarily, at the 
end of the software loop (step 422), The atomic operations of 
the software loop are executed over a reference clock cycle 
(step 424), The wait instruction causes the loop to pause a 
randomized number of cycles (step 426), The wait period 
each iteration may be set in accordance with a predetermined 
wait pattern, 
[0175] A generalized version of Listing 4 is shown in FIG, 
31 wherein the duration of the software loop varies from 
iteration to iteration in accordance with the predetermined 
pattern of random numbers rO is set to, 
[0176] To simplifY the analysis, consider the following 
example pseudo-code shown below in Listing 5: 

Listing 5: Example software loop 

L1: Instruction! 
Instruction2 
Instruction3 
Instruction4 
InstructionS 
Instruction6 
Instruction? 
InstructionS 
wait 8 cycles 
jump L1 I I operates in a continuous loop 

[0177] We further assume that each instruction generates 
the same current on the power supply, A diagram illustrating 
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the instruction current waveform for a software loop having 
eight instructions and eight wait cycles is shown in FIG, 33, A 
diagram illustrating the power spectral density for fixed size 
software loops (i,e, without dithering) is shown in FIG, 34, 
The main spikes occur at the instruction clock frequency (i,e, 
200 MHz) and its harmonics, All the other spurs occur at the 
loop frequency (i,e, 12,5 MHz) and its harmonics, 
[0178] In accordance with the present invention, the wait­
ing time for each loop is randomized (i,e, dithered), A dia­
gram illustrating the instruction current waveform for a soft­
ware loop with randomized wait time is shown in FIG, 35, 
Note the randomized wait times between the clusters of 
instructions, A diagram illustrating the corresponding power 
spectral density for a software loop having a variable duration 
(i,e, length) is shown in FIG, 36, The randomization of the 
wait times cases a significant change in the corresponding 
power spectral density, It is noted that the loop frequency 
spurs are reduced due to the loop size varying from one 
iteration of the software loop to the next, 
[0179] In another embodiment, a plurality of waiting cycles 
are further spread out within the software loop and blended in 
with the instructions, Both the location of and the time dura­
tion of each wait cycle can be randomized, An example listing 
of a variable duration software loop with multiple wait cycles 
is shown in FIG, 37, This generalized listing shows four wait 
cycles, i,e, wait rO, wait rl, wait r2 and wait r3, spread 
throughout the software loop, The values of rO, rl, r2 and r3 
may be set in accordance with a predetermined pattern of 
random wait times, As in the previous embodiment compris­
ing a single wait cycle (e,g,, at the end of the software loop), 
the total wait time of the plurality of wait cycles should not 
exceed what it would have been with a single wait cycle, 
Thus, the dithering of the length of the software loop is now 
divided over a plurality of wait cycles instead of just one, 
Wherein each wait cycle is programmed with a random pat­
tern of wait times such that the overall affect of dithering the 
length of the software loop is still achieved, 
[0180] A flow diagram illustrating a second software dith­
ering method of the present invention is shown in FIG, 38, 
First, the task (e,g,, DPLL computation) is partitioned into a 
plurality of atomic operations (step 430), A plurality of ran­
domized wait instructions are placed throughout the software 
loop (step 432), Preferably, they are placed asymmetrically 
throughout the loop, Random wait patterns are generated for 
each of the wait instructions (step 434), The atomic opera­
tions of the software loop are executed over a reference clock 
cycle (step 436), The execution of each wait instruction 
causes the loop to pause a randomized number of cycles (step 
438), The wait period at each wait cycle over each iteration 
may be set in accordance with a predetermined wait pattern, 
[0181] A diagram illustrating the instruction current wave­
form for a variable duration software loop with multiple wait 
cycles is shown in FIG, 39, Compared to the graph ofFIG, 35, 
the instruction current waveform in FIG, 39 are further spread 
out and randomized in time, A diagram illustrating the power 
spectral density for a software loop with multiple wait cycles 
is shown in FIG, 40, In this graph, corresponding to the 
instruction current waveform of FIG, 39, the frequency spurs 
have become cleaner with regard to the main (i,e, major or 
large) spikes of FIG, 36, 
[0182] In yet another embodiment, one or more instruc­
tions within the software loop are shuffled in random fashion, 
The shuffling may be performed randomly or pseudo-ran­
domly, Randomly shuffling the instructions changes the 
repeating cycles of each instruction, which has the similar 
effect as changing the loop size for those instructions, Note 
that only instructions that are not data dependent are shuffled, 
Instructions that depend on certain data must be executed in 
their proper order, otherwise the D PLL computation (or other 
task computation) will not be carried out properly, Example 
pseudo-code for an DPLL phase computation with shuffled 
instructions and randomized wait time is shown below in 
Listing 6, 
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Listing 6: Pseudo-code for ADPLL phase computation with shuffled instructions and 
randomized wait time 

Ll: y16 ~y15- S1 

S1 ~y15 

y1 ~FCW -y16 

y2 ~y2 +y1 

I I S 1 is the store element 

II delay 

I I accumulation 

y3 ~ IIR (a1, y2, y3) 

y4 ~ IIR (a2, y3, y4) 

y5 ~ IIR (a3, y4, y5) 

y6 ~ IIR (a4, y5, y6) 

II 4th order infinite impulse response(IIR) filter 

y7 - SHL (y6, alpha) 

yll ~ IIR (gs, y7, yll) 

II 1 ,, non-data dependent instruction to be shuffled 

II 2nd non-data dependent instruction to be shuffled 

y9 ~y6- PhE 

y10 ~y10 +y9 

y12 ~ SHL (y10, rho) 

y13 ~ yll + y12 

y14 ~ y13 *gain 

waitrO 

II implies accwnulation 

I I wait for rO cycles 

//next iteration of the software loop 

y16 ~y15- S1 

S1 ~y15 

y1 ~FCW -y16 

y2 ~y2 +y1 

I I S 1 is the store element 

II delay 

I I accumulation 

y3 ~ IIR (a1, y2, y3) 

y4 ~ IIR (a2, y3, y4) 

II 4th order infinite impulse response(IIR) filter 

y5 ~ IIR (a3, y4, y5) 

y6 ~ IIR (a4, y5, y6) 

y9 ~y6- PhE 

y10 ~y10 +y9 

y12 ~ SHL (y10, rho) 

y7 ~ SHL (y6, alpha) 

yll ~ IIR (gs, y7, yll) 

y13 ~ yll + y12 

y14 ~ y13 *gain 

waitrO 

II implies accwnulation 

II 1 ,, shuffled instruction 

II 2nd shuffled instruction 

I I wait for rO cycles; rO changes each loop iteration 

I I in accordance with a predetermined pattern 

jumpLl I I operates in a continuous loop 

[0183] Note that in this example, the atomic operations for 
generating y7 and yll are not data-dependent and thus their 
order in the pseudo-code can be changed from one iteration of 
the software loop to another, In this example, the 'wait rO' 
wait instruction is operative to wait one cycle (to simplify the 
example), In this case, the two shuffled instructions have 
varied repeating cycles of 19 and 14, 
[0184] An example listing of a generalized software loop 
with one or more shuffled instructions is shown in FIG, 4L In 
this generalized loop, any number of non-data dependent 
instructions may be randomly shuffled from iteration to itera-

tion, The wait instruction at the end of the loop may be left out 
depending on the application, In addition, this instruction 
shuffling embodiment may be used in combination with the 
previous embodiment of placing a plurality of wait cycle 
instructions throughout the software loop, 
[0185] A flow diagram illustrating a second software dith­
ering method of the present invention is shown in FIG, 42, 
First, the task (e,g,, DPLL computation) is partitioned into a 
plurality of atomic operations (step 440), One or more non­
data dependent instructions are shuffled thereby changing the 
repeating cycles of each instruction (step 442), A random wait 
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pattern is generated for the wait instruction (step 444). The 
atomic operations of the software loop are executed over a 
reference clock cycle (step 446). The execution of the wait 
instruction causes the loop to pause a randomized number of 
cycles (step 448). The wait period of the wait cycle over each 
iteration may be set in accordance with a predetermined wait 
pattern. 
[0186] A diagram illustrating the current waveform with a 
different power level for each instruction is shown in FIG. 43. 
Note that this current waveform corresponds to a fixed soft­
ware loop instruction pattern. 
[0187] A diagram illustrating the power spectral density for 
a software loop with different instruction power is shown in 
FIG. 44. The power spectral density shown corresponds to the 
instruction current waveform of FIG. 43 representing a fixed 
instruction pattern. To make the comparison fair, the average 
power for each instruction remains the same. 
[0188] A diagram illustrating the instruction current wave­
form for a software loop with one or more shuffled instruc­
tions is shown in FIG. 45. 
[0189] Compared to the instruction power graphs of FIGS. 
35, 39 and 43 the instruction current waveform of FIG. 45 
exhibits a different power for each instruction. This is due to 
the effect of shuffling the one or more instructions within the 
software loop from iteration to iteration. The higher the num­
ber of unique shuffled instruction loops, the higher the ran­
domization in the instruction current waveform and resultant 
power spectral density. 
[0190] A diagram illustrating the power spectral density for 
a software loop with one or more shuffled instructions is 
shown in FIG. 46. This figure demonstrates that when shuf­
fling instructions within the loop, the power spectral density 
changes. Compared to the power spectral density plots of 
FIG. 44, the main spurs are not significantly different. The 
spurs surrounding the main spurs, however, are reduced due 
to the dithering achieved by the instruction shuffling. For 
example, it can be seen that instruction shuffling achieves a 
reduction in the spikes of the loop frequency spurs of appro xi­
mately 1.5 dB/Hz. 
[0191] Thus, the present invention provides several mecha­
nisms for breaking the software loop pattern to improve the 
frequency spur performance. These mechanisms include: (1) 
waiting a random number of cycles at the end of the software, 
(2) spreading (either randomly or otherwise) a plurality of 
random wait cycles throughout the software loop thus blend­
ing with the loop instructions, and (3) shuffling one or more 
instructions within the software loop. It is noted that these 
mechanism may be implemented alone or in any combination 
in accordance with the particular application and degree of 
spur reduction desired. 
[0192] It is important to note that these spurious reductions 
mechanisms can be made adaptive using close loop control. 
In this case, the processor monitors the spurious performance 
by collecting real time or near real time internal DPLL data, 
e.g., phase error, etc., and analyzes the data to determine the 
performance. In response, one or more parameters and/or 
methods are adjusted accordingly to improve the perfor­
mance until optimum performance is obtained. 

Hardware Dithering to Reduce Frequency Spurs 

[0193] In accordance with the invention, the software dith­
ering method described supra can be applied to a hardware 
counterpart through the use of clock gating. A block diagram 
illustrating hardware dithering through clock gating is shown 
in FIG. 47. The system, generally referenced 450, comprises 
reconfigurable calculation unit (RCU) 456, a control state 
machine 454 and clock gating circuit 452. 
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[0194] In this embodiment, the data processing algorithm 
for the software based DPLL is implemented using hardware 
that is controlled by the state machine. The control state 
machine 454 configures the reconfigurable computation unit 
(RCU) 456 to apply different processing to a particular data 
sample received on the DATA IN line to generate output data 
on the DATA OUT line. The state machine waits if it is able to 
complete the processing required for a data sample before the 
next data sample arrives. Random waiting cycles can be 
inserted either through clock gating (driven off the primary 
clock input) or through the control state machine 454. In this 
fashion, the three dithering based mechanisms described 
supra, i.e. (1) waiting a random number of cycles at the end of 
the software, (2) spreading (either randomly or otherwise) a 
plurality of random wait cycles throughout the software loop 
thus blending with the loop instructions, and (3) shuffling one 
or more instructions within the software loop, are imple­
mented. The first two mechanisms may be implemented 
either by clock gating or via the control state machine. The 
third mechanism (i.e. shuffling), is implemented via the con­
trol state machine. 
[0195] The terminology used herein is for the purpose of 
describing particular embodiments only and is not intended to 
be limiting of the invention. As used herein, the singular 
forms "a", "an" and "the" are intended to include the plural 
forms as well, unless the context clearly indicates otherwise. 
It will be further understood that the terms "comprises" and/ 
or "comprising," when used in this specification, specify the 
presence of stated features, integers, steps, operations, ele­
ments, and/or components, but do not preclude the presence 
or addition of one or more other features, integers, steps, 
operations, elements, components, and/or groups thereof. 
[0196] The corresponding structures, materials, acts, and 
equivalents of all means or step plus function elements in the 
claims below are intended to include any structure, material, 
or act for performing the function in combination with other 
claimed elements as specifically claimed. The description of 
the present invention has been presented for purposes of 
illustration and description, but is not intended to be exhaus­
tive or limited to the invention in the form disclosed. As 
numerous modifications and changes will readily occur to 
those skilled in the art, it is intended that the invention not be 
limited to the limited number of embodiments described 
herein. Accordingly, it will be appreciated that all suitable 
variations, modifications and equivalents may be resorted to, 
falling within the spirit and scope of the present invention. 
The embodiments were chosen and described in order to best 
explain the principles of the invention and the practical appli­
cation, and to enable others of ordinary skill in the art to 
understand the invention for various embodiments with vari­
ous modifications as are suited to the particular use contem­
plated. 

What is claimed is: 
1. A method of reducing the generation of frequency spurs 

in the performance of a processing task normally performed 
within a reference clock period, said method comprising the 
steps of: 

dividing said task into a plurality of atomic operation com­
putations for execution in a software loop; 

randomizing the execution of one or more atomic opera­
tions in each iteration of said software loop; and 

wherein said atomic operations are clocked using a proces­
sor clock having a frequency significantly higher than 
that of said reference clock. 
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2. The method according to claim 1, wherein said compu­
tations of atomic operations are spread out in time throughout 
said reference clock period to reduce the effects of said fre­
quency spurs. 

3. The method according to claim 1, wherein said process­
ing task comprises a digital phase locked loop. 

4. The method according to claim 1, wherein said step of 
randomizing comprises the step of dithering the duration of 
each iteration of said software loop. 

5. The method according to claim 1, wherein said step of 
randomizing comprises the step of inserting a plurality of 
random wait cycles throughout said software loop. 

6. The method according to claim 1, wherein said step of 
randomizing comprises the step of shuffling the order of 
execution of one or more instructions within said software 
loop. 

7. The method according to claim 1, further comprising the 
step of applying closed loop control whereby said step of 
randomizing is adjusted in accordance with one or more 
performance data collected from the execution of said pro­
cessing task. 

8. A method of reducing the generation of frequency spurs 
in a software based digital phase locked loop normally per­
formed within a reference clock period, said method com­
prising the steps of: 

dividing computation of said phase locked loop operation 
into a plurality of atomic operation computations for 
execution in a software loop; 

dithering the duration of each iteration of said software 
loop; and 

wherein said atomic operations are clocked using a proces­
sor clock having a frequency significantly higher than 
that of said reference clock. 

9. The method according to claim 8, wherein the average 
period of execution of said software loop equal to said refer­
ence clock period. 

10. The method according to claim 8, said step of dithering 
changes the spectrum of spurs generated by said atomic com­
putations. 

11. The method according to claim 8, wherein said step of 
dithering comprises the step of inserting a random wait period 
at the end of said software loop. 

12. The method according to claim 11, wherein the dura­
tion of the random wait period in each iteration of said soft­
ware loop is set in accordance with a predetermined wait 
pattern. 

13. The method according to claim 8, wherein all compu­
tations required to perform said phase locked loop operation 
are completed within said reference clock period. 

14. The method according to claim 8, wherein dithering the 
duration of each iteration of said software loop significantly 
reduces effects of current transients. 

15. The method according to claim 8, further comprising 
the step of applying closed loop control to said method 
whereby said step of dithering is adjusted in accordance with 
one or more performance data collected from the execution of 
said digital phase locked loop. 

16. A method of reducing the generation of frequency spurs 
in a software based digital phase locked loop normally per­
formed within a reference clock period, said method com­
prising the steps of: 

dividing computation of said phase locked loop operation 
into a plurality of atomic operation computations for 
execution in a software loop; 

17 
Oct. 22, 2009 

dithering the duration of each iteration of said software 
loop by inserting a plurality of random wait periods 
throughout said software loop; and 

wherein said atomic operations are clocked using a proces­
sor clock having a frequency significantly higher than 
that of said reference clock. 

17. The method according to claim 16, wherein the average 
period of execution of said software loop is equal to said 
reference clock period. 

18. The method according to claim 16, said step of dither­
ing changes the spectrum of spurs generated by said atomic 
computations. 

19. The method according to claim 16, wherein the dura­
tion of each random wait period is set in accordance with a 
predetermined respective wait pattern. 

20. The method according to claim 16, wherein all com­
putations required to perform said phase locked loop opera­
tion are completed within said reference clock period. 

21. The method according to claim 16, wherein dithering 
the duration of each iteration of said software loop signifi­
cantly reduces the loop frequency spurs. 

22. The method according to claim 16, further comprising 
the step of applying closed loop control to said method 
whereby said step of dithering is adjusted in accordance with 
one or more performance data collected from the execution of 
said digital phase locked loop. 

23. A method of reducing the generation of frequency spurs 
in a software based digital phase locked loop normally per­
formed within a reference clock period, said method com­
prising the steps of: 

dividing computation of said phase locked loop operation 
into a plurality of atomic operation computations for 
execution in a software loop; 

randomly shuffling the order of execution of one or more 
atomic operations in each iteration of said software loop; 
and 

wherein said atomic operations are clocked using a proces­
sor clock having a frequency significantly higher than 
that of said reference clock. 

24. The method according to claim 23, wherein said one or 
more shuffled atomic operations comprise non-data depen­
dent atomic operations. 

25. The method according to claim 23, further comprising 
the step of concatenating a plurality of reshuffled software 
loops to generate a modified software loop, wherein the 
atomic operation order of execution in each reshuffled soft­
ware loop is unique. 

26. The method according to claim 25, wherein higher 
numbers of concatenated software loops yields higher reduc­
tions in loop frequency spurs. 

27. The method according to claim 23, wherein all com­
putations required to perform said phase locked loop opera­
tion are completed within said reference clock period. 

28. The method according to claim 23, wherein dithering 
the duration of each iteration of said software loop signifi­
cantly reduces loop frequency spurs. 

29. The method according to claim 23, further comprising 
the step of applying closed loop control whereby said step of 
randomly shuffling is adjusted in accordance with one or 
more performance data collected from the execution of said 
digital phase locked loop. 

30. A phase locked loop (PLL) having a reference clock, 
said PLL comprising: 
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means for partitioning computation of said phase locked 
loop into a plurality of atomic operation computations 
for execution in a software loop; 

means for randomizing the execution of one or more 
atomic operations in each iteration of said software loop; 

a processor clock having a frequency significantly higher 
than that of said reference clock; 

an oscillator operative to generate a radio frequency (RF) 
signal having a frequency determined in accordance 
with a tuning command input thereto; and 

a processor operative to generate said tuning command, 
said processor clocked at said processor clock rate, said 
processor comprising a calculation unit operative to 
execute instructions, wherein each instruction is opera­
tive to perform one of said atomic operation computa­
tions. 

31. The phase locked loop according to claim 30, wherein 
said means for randomizing comprises the step of dithering 
the duration of each iteration of said software loop. 
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32. The phase locked loop according to claim 30, wherein 
said means for randomizing comprises the step of inserting a 
plurality of random wait cycles throughout said software 
loop. 

33. The phase locked loop according to claim 30, wherein 
said means for randomizing comprises the step of shuffling 
the order of execution of one or more instructions within said 
software loop. 

34. The phase locked loop according to claim 30, further 
comprising a time to digital converter (TDC) for measuring a 
phase error between said reference clock and said RF signal. 

35. The phase locked loop according to claim 30, further 
comprising a clock divider coupled to said oscillator for gen­
eration of said processor clock. 

36. The method according to claim 30, further comprising 
a closed loop control unit whereby said means for randomiz­
ing is adjusted in accordance with one or more performance 
data collected from the execution of said phase locked loop. 

* * * * * 


